RSS-Feed abonnieren
DOI: 10.1055/a-1947-5562
Retinale und choroidale Ultra-Weitwinkel-OCT – Technologie, Einblicke und klinische Bedeutung
Artikel in mehreren Sprachen: deutsch | EnglishZusammenfassung
Die Ultra-Weitwinkel optische Kohärenztomografie (UWF-OCT) bietet als eine der modernsten Verfahren der retinalen und choroidalen Bildgebung einen deutlichen Zugewinn an Informationen hinsichtlich peripherer Netzhautläsionen und deren Differenzialdiagnosen. Insbesondere das Vorliegen minimaler Ansammlungen subretinaler Flüssigkeit kann damit detailliert beurteilt und im Verlauf dokumentiert werden. Auch die choroidale Ausdehnung von Aderhautläsionen kann exakt vermessen werden. Die Limitationen in der Anwendung beschränken sich ähnlich wie bei der bisherigen OCT nach wie vor auf die Trübung optischer Medien und die Compliance des Patienten. Die Weite der Pupille spielt hier eine eher untergeordnete Rolle, die Qualität der Aufnahmen ist jedoch in medikamentöser Mydriasis besser. Zusammen mit der UWF-Fundusfotografie ist die UWF-OCT ein hilfreiches Tool in der Beurteilung und Kontrolle peripherer Netzhaut- und Aderhautläsionen.
Publikationsverlauf
Eingereicht: 01. August 2022
Angenommen: 14. September 2022
Artikel online veröffentlicht:
09. Dezember 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Hee MR, Baumal CR, Puliafito CA. et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 1996; 103: 1260-1270 DOI: 10.1016/s0161-6420(96)30512-5.
- 2 Coscas F, Coscas G, Souied E. et al. Optical coherence tomography identification of occult choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 2007; 144: 592-599 DOI: 10.1016/j.ajo.2007.06.014.
- 3 Pieroni CG, Witkin AJ, Ko TH. et al. Ultrahigh resolution optical coherence tomography in non-exudative age related macular degeneration. Br J Ophthalmol 2006; 90: 191-197 DOI: 10.1136/bjo.2005.076612.
- 4 Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 2005; 36: 331-335
- 5 Sayanagi K, Sharma S, Yamamoto T. et al. Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab. Ophthalmology 2009; 116: 947-955 DOI: 10.1016/j.ophtha.2008.11.002.
- 6 Framme C, Panagakis G, Birngruber R. Effects on choroidal neovascularization after anti-VEGF Upload using intravitreal ranibizumab, as determined by spectral domain-optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 1671-1676 DOI: 10.1167/iovs.09-4496.
- 7 Hee MR, Puliafito CA, Duker JS. et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 1998; 105: 360-370 DOI: 10.1016/s0161-6420(98)93601-6.
- 8 Rosenfeld PJ, Fung AE, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion. Ophthalmic Surg Lasers Imaging 2005; 36: 336-339
- 9 Rehak J, Rehak M. Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities. Curr Eye Res 2008; 33: 111-131 DOI: 10.1080/02713680701851902.
- 10 Karim R, Sykakis E, Lightman S. et al. Interventions for the treatment of uveitic macular edema: a systematic review and meta-analysis. Clin Ophthalmol 2013; 7: 1109-1144 DOI: 10.2147/OPTH.S40268.
- 11 Sudhalkar A, Chhablani J, Vasavada A. et al. Intravitreal dexamethasone implant for recurrent cystoid macular edema due to Irvine-Gass syndrome: a prospective case series. Eye (Lond) 2016; 30: 1549-1557 DOI: 10.1038/eye.2016.205.
- 12 Minami Y, Ishiko S, Takai Y. et al. Retinal changes in juvenile X linked retinoschisis using three dimensional optical coherence tomography. Br J Ophthalmol 2005; 89: 1663-1664 DOI: 10.1136/bjo.2005.075648.
- 13 Duncker T, Greenberg JP, Ramachandran R. et al. Quantitative fundus autofluorescence and optical coherence tomography in best vitelliform macular dystrophy. Invest Ophthalmol Vis Sci 2014; 55: 1471-1482 DOI: 10.1167/iovs.13-13834.
- 14 Tanner V, Chauhan DS, Jackson TL. et al. Optical coherence tomography of the vitreoretinal interface in macular hole formation. Br J Ophthalmol 2001; 85: 1092-1097 DOI: 10.1136/bjo.85.9.1092.
- 15 Ko TH, Fujimoto JG, Duker JS. et al. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 2004; 111: 2033-2043 DOI: 10.1016/j.ophtha.2004.05.021.
- 16 Brockmann T, Steger C, Weger M. et al. Risk assessment of idiopathic macular holes undergoing vitrectomy with dye-assisted internal limiting membrane peeling. Retina 2013; 33: 1132-1136 DOI: 10.1097/IAE.0b013e31827c5384.
- 17 Ehlers JP, Tam T, Kaiser PK. et al. Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome. Retina 2014; 34: 1341-1346 DOI: 10.1097/IAE.0000000000000123.
- 18 Wessing A. Fluorescein Angiography of the Retina. Textbook and Atlas. Translated by G.K. von Noorden. St. Louis: Mosby; 1969
- 19 Kozak I, Morrison VL, Clark TM. et al. Discrepancy between fluorescein angiography and optical coherence tomography in detection of macular disease. Retina 2008; 28: 538-544 DOI: 10.1097/IAE.0b013e318167270b.
- 20 Kogure K, David NJ, Yamanouchi U. et al. Infrared absorption angiography of the fundus circulation. Arch Ophthalmol 1970; 83: 209-214 DOI: 10.1001/archopht.1970.00990030211015.
- 21 Hochheimer BF. Angiography of the retina with indocyanine green. Arch Ophthalmol 1971; 86: 564-565 DOI: 10.1001/archopht.1971.01000010566014.
- 22 Talks J, Koshy Z, Chatzinikolas K. Use of optical coherence tomography, fluorescein angiography and indocyanine green angiography in a screening clinic for wet age-related macular degeneration. Br J Ophthalmol 2007; 91: 600-601 DOI: 10.1136/bjo.2006.108043.
- 23 Huang Y, Zhang Q, Thorell MR. et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina 2014; 45: 382-389 DOI: 10.3928/23258160-20140909-08.
- 24 Spaide RF, Fujimoto JG, Waheed NK. Optical Coherence Tomography Angiography. Retina 2015; 35: 2161-2162 DOI: 10.1097/IAE.0000000000000881.
- 25 Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015; 133: 45-50 DOI: 10.1001/jamaophthalmol.2014.3616.
- 26 Spaide RF. Optical Coherence Tomography Angiography Signs of Vascular Abnormalization With Antiangiogenic Therapy for Choroidal Neovascularization. Am J Ophthalmol 2015; 160: 6-16 DOI: 10.1016/j.ajo.2015.04.012.
- 27 Witmer MT, Kiss S. Wide-field imaging of the retina. Surv Ophthalmol 2013; 58: 143-154 DOI: 10.1016/j.survophthal.2012.07.003.
- 28 Witmer MT, Parlitsis G, Patel S. et al. Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®). Clin Ophthalmol 2013; 7: 389-394 DOI: 10.2147/OPTH.S41731.
- 29 Abalem MF, Otte B, Andrews C. et al. Peripheral Visual Fields in ABCA4 Stargardt Disease and Correlation With Disease Extent on Ultra-widefield Fundus Autofluorescence. Am J Ophthalmol 2017; 184: 181-188 DOI: 10.1016/j.ajo.2017.10.006.
- 30 Choudhry N, Golding J, Manry MW. et al. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery. Ophthalmology 2016; 123: 1368-1374 DOI: 10.1016/j.ophtha.2016.01.045.
- 31 Holmes J. OCT technology development: where are we now? A commercial perspective. J Biophotonics 2009; 2: 347-352 DOI: 10.1002/jbio.200910014.
- 32 Fercher A, Hitzenberger C, Kamp G. et al. Measurement of intraocular distances by backscattering spectral interferometry. Opt Comm 1995; 117: 43-48
- 33 Fercher AF, Drexler W, Hitzenberger CK. et al. Optical coherence tomography-principles and applications. Rep Prog Physics 2003; 66: 239-303
- 34 Huang D, Swanson EA, Lin CP. et al. Optical coherence tomography. Science 1991; 254: 1178-1181 DOI: 10.1126/science.1957169.
- 35 Forooghian F, Cukras C, Meyerle CB. et al. Evaluation of time domain and spectral domain optical coherence tomography in the measurement of diabetic macular edema. Invest Ophthalmol Vis Sci 2008; 49: 4290-4296 DOI: 10.1167/iovs.08-2113.
- 36 Ung C, Laíns I, Silverman RF. et al. Evaluation of choroidal lesions with swept-source optical coherence tomography. Br J Ophthalmol 2019; 103: 88-93 DOI: 10.1136/bjophthalmol-2017-311586.