CC BY-NC-ND 4.0 · Hamostaseologie 2022; 42(06): 390-399
DOI: 10.1055/a-1945-9429
Review Article

Insights into the Molecular Genetic of Hemophilia A and Hemophilia B: The Relevance of Genetic Testing in Routine Clinical Practice

Behnaz Pezeshkpoor
1   Institute of Experimental Hematology and Transfusion Medicine, Medical Faculty, University of Bonn, University Hospital Bonn, Bonn, Germany
2   Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
,
Johannes Oldenburg
1   Institute of Experimental Hematology and Transfusion Medicine, Medical Faculty, University of Bonn, University Hospital Bonn, Bonn, Germany
2   Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
,
Anna Pavlova
1   Institute of Experimental Hematology and Transfusion Medicine, Medical Faculty, University of Bonn, University Hospital Bonn, Bonn, Germany
2   Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
› Author Affiliations

Abstract

Hemophilia A and hemophilia B are rare congenital, recessive X-linked disorders caused by lack or deficiency of clotting factor VIII (FVIII) or IX (FIX), respectively. The severity of the disease depends on the reduction of coagulation FVIII or FIX activity levels, which is determined by the type of the pathogenic variants in the genes encoding the two factors (F8 and F9, respectively). Molecular genetic analysis is widely applied in inherited bleeding disorders. The outcome of genetic analysis allows genetic counseling of affected families and helps find a link between the genotype and the phenotype. Genetic analysis in hemophilia has tremendously improved in the last decades. Many new techniques and modifications as well as analysis softwares became available, which made the genetic analysis and interpretation of the data faster and more accurate. Advances in genetic variant detection strategies facilitate identification of the causal variants in up to 97% of patients. In this review, we discuss the milestones in genetic analysis of hemophilia and highlight the importance of identification of the causative genetic variants for genetic counseling and particularly for the interpretation of the clinical presentation of hemophilia patients.

Zusammenfassung

Hämophilie A und B sind seltene angeborene, rezessive X-chromosomale Erkrankungen, die durch einen Mangel an Gerinnungsfaktor VIII (FVIII) bzw. IX (FIX) verursacht werden. Der Schweregrad der Erkrankung hängt von der Verringerung der Gerinnungsaktivitäten von FVIII bzw. FIX ab, die durch die Art der pathogenen Varianten in den Genen für die beiden Faktoren (F8 bzw. F9) bestimmt wird. Die molekulargenetische Analyze wird häufig bei vererbten Blutungsstörungen eingesetzt. Die Ergebnisse ermöglichen eine genetische Beratung der betroffenen Familien und helfen dabei, eine Verbindung zwischen dem Genotyp und dem Phänotyp zu erstellen. Die genetische Analyze der Hämophilie hat sich in den letzten Jahrzehnten enorm verbessert. Viele neue Techniken und Modifikationen sowie Analysesoftware sind inzwischen verfügbar, so dass die genetische Analyze und die Interpretation der Daten schneller und genauer erfolgen kann. Fortschritte bei den Strategien zur Erkennung von genetische Varianten erleichtern die Identifizierung der ursächlichen Varianten bei bis zu 97% der Patienten. In dieser Übersicht werden die Meilensteine der genetischen Analyze der Hämophilie erörtert und die Bedeutung der Identifizierung ursächlicher genetischer Varianten für die genetische Beratung und insbesondere für die Interpretation des Krankheitsbildes von Hämophiliepatienten hervorgehoben.



Publication History

Received: 01 September 2022

Accepted: 08 September 2022

Article published online:
22 December 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Blanchette VS, Key NS, Ljung LR, Manco-Johnson MJ, van den Berg HM, Srivastava A. Subcommittee on Factor VIII, Factor IX and Rare Coagulation Disorders of the Scientific and Standardization Committee of the International Society on Thrombosis and Hemostasis. Definitions in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost 2014; 12 (11) 1935-1939
  • 2 Berntorp E, Shapiro AD. Modern haemophilia care. Lancet 2012; 379 (9824): 1447-1456
  • 3 Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961; 190: 372-373
  • 4 Harper PS. Mary Lyon and the hypothesis of random X chromosome inactivation. Hum Genet 2011; 130 (02) 169-174
  • 5 Fischer K, Ljung R, Platokouki H. et al. Prospective observational cohort studies for studying rare diseases: the European PedNet Haemophilia Registry. Haemophilia 2014; 20 (04) e280-e286
  • 6 Gomez K, Laffan M, Keeney S, Sutherland M, Curry N, Lunt P. Recommendations for the clinical interpretation of genetic variants and presentation of results to patients with inherited bleeding disorders. A UK Haemophilia Centre Doctors' Organisation Good Practice Paper. Haemophilia 2019; 25 (01) 116-126
  • 7 Miller CH, Bean CJ. Genetic causes of haemophilia in women and girls. Haemophilia 2021; 27 (02) e164-e179
  • 8 Pavlova A, Brondke H, Müsebeck J, Pollmann H, Srivastava A, Oldenburg J. Molecular mechanisms underlying hemophilia A phenotype in seven females. J Thromb Haemost 2009; 7 (06) 976-982
  • 9 Acquila M, Caprino D, Bicocchi P, Mori PG, Tagliaferri AR. A skewed lyonization phenomenon as cause of hemophilia A in a female patient. Blood 1995; 85 (02) 599-600
  • 10 Bennett CM, Boye E, Neufeld EJ. Female monozygotic twins discordant for hemophilia A due to nonrandom X-chromosome inactivation. Am J Hematol 2008; 83 (10) 778-780
  • 11 Radic CP, Rossetti LC, Abelleyro MM. et al. Phenotype-genotype correlations in hemophilia A carriers are consistent with the binary role of the phase between F8 and X-chromosome inactivation. J Thromb Haemost 2015; 13 (04) 530-539
  • 12 Palla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood 2015; 125 (13) 2052-2061
  • 13 Gitschier J, Wood WI, Goralka TM. et al. Characterization of the human factor VIII gene. Nature 1984; 312 (5992): 326-330
  • 14 Youssoufian H, Wong C, Aronis S, Platokoukis H, Kazazian Jr HH, Antonarakis SE. Moderately severe hemophilia A resulting from Glu–Gly substitution in exon 7 of the factor VIII gene. Am J Hum Genet 1988; 42 (06) 867-871
  • 15 El-Maarri O, Olek A, Balaban B. et al. Methylation levels at selected CpG sites in the factor VIII and FGFR3 genes, in mature female and male germ cells: implications for male-driven evolution. Am J Hum Genet 1998; 63 (04) 1001-1008
  • 16 Oldenburg J, Schröder J, Schmitt C, Brackmann HH, Schwaab R. Small deletion/insertion mutations within poly-A runs of the factor VIII gene mitigate the severe haemophilia A phenotype. Thromb Haemost 1998; 79 (02) 452-453
  • 17 Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 2017; 58 (05) 235-263
  • 18 Bagnall RD, Waseem N, Green PM, Giannelli F. Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe hemophilia A. Blood 2002; 99 (01) 168-174
  • 19 Naylor JA, Buck D, Green P, Williamson H, Bentley D, Giannelli F. Investigation of the factor VIII intron 22 repeated region (int22h) and the associated inversion junctions. Hum Mol Genet 1995; 4 (07) 1217-1224
  • 20 Lakich D, Kazazian Jr HH, Antonarakis SE, Gitschier J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet 1993; 5 (03) 236-241
  • 21 Rossiter JP, Young M, Kimberland ML. et al. Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells. Hum Mol Genet 1994; 3 (07) 1035-1039
  • 22 Tavassoli K, Eigel A, Horst J. A deletion/insertion leading to the generation of a direct repeat as a result of slipped mispairing and intragenic recombination in the factor VIII gene. Hum Genet 1999; 104 (05) 435-437
  • 23 Vidal F, Farssac E, Tusell J, Puig L, Gallardo D. First molecular characterization of an unequal homologous Alu-mediated recombination event responsible for hemophilia. Thromb Haemost 2002; 88 (01) 12-16
  • 24 Briet E, Bertina RM, van Tilburg NH, Veltkamp J, Veltkamp J. Hemophilia B Leyden: A sex-linked hereditary disorder that improves after puberty. N Engl J Med, 306 (1982), p. 788
  • 25 Funnell APW, Crossley M. Hemophilia B Leyden and once mysterious cis-regulatory mutations. Trends Genet 2014; 30 (01) 18-23
  • 26 Schwaab R, Oldenburg J, Higuchi M. et al. Haemophilia A: carrier detection by DNA analysis. Blut 1988; 57 (02) 85-90
  • 27 Lin S-Y, Su Y-N, Hung C-C. et al. Mutation spectrum of 122 hemophilia A families from Taiwanese population by LD-PCR, DHPLC, multiplex PCR and evaluating the clinical application of HRM. BMC Med Genet 2008; 9: 53
  • 28 Higuchi M, Kazazian Jr HH, Kasch L. et al. Molecular characterization of severe hemophilia A suggests that about half the mutations are not within the coding regions and splice junctions of the factor VIII gene. Proc Natl Acad Sci U S A 1991; 88 (16) 7405-7409
  • 29 Rossetti LC, Radic CP, Larripa IB, De Brasi CD. Genotyping the hemophilia inversion hotspot by use of inverse PCR. Clin Chem 2005; 51 (07) 1154-1158
  • 30 Rossetti LC, Radic CP, Larripa IB, De Brasi CD. Developing a new generation of tests for genotyping hemophilia-causative rearrangements involving int22h and int1h hotspots in the factor VIII gene. J Thromb Haemost 2008; 6 (05) 830-836
  • 31 Lu JT, Campeau PM, Lee BH. Genotype-phenotype correlation–promiscuity in the era of next-generation sequencing. N Engl J Med 2014; 371 (07) 593-596
  • 32 Sikkema-Raddatz B, Johansson LF, de Boer EN. et al. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat 2013; 34 (07) 1035-1042
  • 33 Bastida JM, Del Rey M, Lozano ML. et al. Design and application of a 23-gene panel by next-generation sequencing for inherited coagulation bleeding disorders. Haemophilia 2016; 22 (04) 590-597
  • 34 Richards S, Aziz N, Bale S. et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 35 Bastida JM, González-Porras JR, Jiménez C. et al. Application of a molecular diagnostic algorithm for haemophilia A and B using next-generation sequencing of entire F8, F9 and VWF genes. Thromb Haemost 2017; 117 (01) 66-74
  • 36 Ver Donck F, Downes K, Freson K. Strengths and limitations of high-throughput sequencing for the diagnosis of inherited bleeding and platelet disorders. J Thromb Haemost 2020; 18 (08) 1839-1845
  • 37 Zhao M, Wang Q, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinformatics 2013; 14 (Suppl. 11) S1
  • 38 Wolf SM. The continuing evolution of ethical standards for genomic sequencing in clinical care: restoring patient choice. J Law Med Ethics 2017; 45 (03) 333-340
  • 39 Ver Donck F, Labarque V, Freson K. Hemostatic phenotypes and genetic disorders. Res Pract Thromb Haemost 2021; 5 (08) e12637
  • 40 Pezeshkpoor B, Pavlova A, Oldenburg J, El-Maarri O. F8 genetic analysis strategies when standard approaches fail. Hamostaseologie 2014; 34 (02) 167-173
  • 41 Czogalla KJ, Watzka M, Oldenburg J. VKCFD2 - from clinical phenotype to molecular mechanism. Hamostaseologie 2016; 36 (Suppl. 02) S13-S20
  • 42 McLintock C. Women with bleeding disorders: clinical and psychological issues. Haemophilia 2018; 24 (Suppl. 06) 22-28
  • 43 Lavery S. Preimplantation genetic diagnosis of haemophilia. Br J Haematol 2009; 144 (03) 303-307
  • 44 Punt MC, Aalders TH, Bloemenkamp KWM. et al. The experiences and attitudes of hemophilia carriers around pregnancy: a qualitative systematic review. J Thromb Haemost 2020; 18 (07) 1626-1636
  • 45 Gillham A, Greyling B, Wessels T-M. et al. Uptake of genetic counseling, knowledge of bleeding risks and psychosocial impact in a South African cohort of female relatives of people with hemophilia. J Genet Couns 2015; 24 (06) 978-986
  • 46 von der Lippe C, Frich JC, Harris A, Solbrække KN. “It was a lot tougher than I thought it would be”. A qualitative study on the changing nature of being a hemophilia carrier. J Genet Couns 2017; 26 (06) 1324-1332
  • 47 Kadir RA, Sabin CA, Goldman E, Pollard D, Economides DL, Lee CA. Reproductive choices of women in families with haemophilia. Haemophilia 2000; 6 (01) 33-40
  • 48 Laurie AD, Hill AM, Harraway JR. et al. Preimplantation genetic diagnosis for hemophilia A using indirect linkage analysis and direct genotyping approaches. J Thromb Haemost 2010; 8 (04) 783-789
  • 49 Ljung RC. Prenatal diagnosis of haemophilia. Haemophilia 1999; 5 (02) 84-87
  • 50 Cutler J, Chappell LC, Kyle P, Madan B. Third trimester amniocentesis for diagnosis of inherited bleeding disorders prior to delivery. Haemophilia 2013; 19 (06) 904-907
  • 51 Ljung RC, Sjörin E. Origin of mutation in sporadic cases of haemophilia A. Br J Haematol 1999; 106 (04) 870-874
  • 52 Leuer M, Oldenburg J, Lavergne JM. et al. Somatic mosaicism in hemophilia A: a fairly common event. Am J Hum Genet 2001; 69 (01) 75-87
  • 53 Kasper CK, Buzin CH. Mosaics and haemophilia. Haemophilia 2009; 15 (06) 1181-1186
  • 54 Lannoy N, Hermans C. Genetic mosaicism in haemophilia: a practical review to help evaluate the risk of transmitting the disease. Haemophilia 2020; 26 (03) 375-383
  • 55 Mårtensson A, Tedgård U, Ljung R. Prenatal diagnosis of haemophilia in Sweden now more commonly used for psychological preparation than termination of pregnancy. Haemophilia 2014; 20 (06) 854-858
  • 56 Boardman FK, Young PJ, Warren O, Griffiths FE. The role of experiential knowledge within attitudes towards genetic carrier screening: a comparison of people with and without experience of spinal muscular atrophy. Health Expect 2018; 21 (01) 201-211
  • 57 Hudecova I, Jiang P, Davies J, Lo YMD, Kadir RA, Chiu RWK. Noninvasive detection of F8 int22h-related inversions and sequence variants in maternal plasma of hemophilia carriers. Blood 2017; 130 (03) 340-347
  • 58 van den Berg HM, Fischer K, Carcao M. et al; PedNet Study Group. Timing of inhibitor development in more than 1000 previously untreated patients with severe hemophilia A. Blood 2019; 134 (03) 317-320
  • 59 Male C, Andersson NG, Rafowicz A. et al. Inhibitor incidence in an unselected cohort of previously untreated patients with severe haemophilia B: a PedNet study. Haematologica 2021; 106 (01) 123-129
  • 60 Astermark J. FVIII inhibitors: pathogenesis and avoidance. Blood 2015; 125 (13) 2045-2051
  • 61 Gouw SC, van den Berg HM, Oldenburg J. et al. F8 gene mutation type and inhibitor development in patients with severe hemophilia A: systematic review and meta-analysis. Blood 2012; 119 (12) 2922-2934
  • 62 Oldenburg J, Pavlova A. Genetic risk factors for inhibitors to factors VIII and IX. Haemophilia 2006; 12 (Suppl. 06) 15-22
  • 63 Eckhardt CL, Loomans JI, van Velzen AS. et al; INSIGHT Study Group. Inhibitor development and mortality in non-severe hemophilia A. J Thromb Haemost 2015; 13 (07) 1217-1225
  • 64 Castaman G, Fijnvandraat K. Molecular and clinical predictors of inhibitor risk and its prevention and treatment in mild hemophilia A. Blood 2014; 124 (15) 2333-2336
  • 65 Bardi E, Astermark J. Genetic risk factors for inhibitors in haemophilia A. Eur J Haematol 2015; 94 (Suppl. 77) 7-10
  • 66 Pavlova A, Oldenburg J. Defining severity of hemophilia: more than factor levels. Semin Thromb Hemost 2013; 39 (07) 702-710
  • 67 Lee DH, Walker IR, Teitel J. et al. Effect of the factor V Leiden mutation on the clinical expression of severe hemophilia A. Thromb Haemost 2000; 83 (03) 387-391
  • 68 Preisler B, Pezeshkpoor B, Banchev A. et al. Familial multiple coagulation factor deficiencies (FMCFDs) in a large cohort of patients - a single-center experience in genetic diagnosis. J Clin Med 2021; 10 (02) 347
  • 69 Escuriola Ettingshausen C, Halimeh S, Kurnik K. et al. Symptomatic onset of severe hemophilia A in childhood is dependent on the presence of prothrombotic risk factors. Thromb Haemost 2001; 85 (02) 218-220
  • 70 van Dijk K, van der Bom JG, Fischer K, de Groot PG, van den Berg HM. Phenotype of severe hemophilia A and plasma levels of risk factors for thrombosis. J Thromb Haemost 2007; 5 (05) 1062-1064
  • 71 Shetty S, Vora S, Kulkarni B. et al. Contribution of natural anticoagulant and fibrinolytic factors in modulating the clinical severity of haemophilia patients. Br J Haematol 2007; 138 (04) 541-544
  • 72 Boylan B, Rice AS, De Staercke C. et al; Hemophilia Inhibitor Research Study Investigators. Evaluation of von Willebrand factor phenotypes and genotypes in hemophilia A patients with and without identified F8 mutations. J Thromb Haemost 2015; 13 (06) 1036-1042
  • 73 Gupta M, Lillicrap D, Stain AM, Friedman KD, Carcao MD. Therapeutic consequences for misdiagnosis of type 2N von Willebrand disease. Pediatr Blood Cancer 2011; 57 (06) 1081-1083
  • 74 Mazurier C, Goudemand J, Hilbert L, Caron C, Fressinaud E, Meyer D. Type 2N von Willebrand disease: clinical manifestations, pathophysiology, laboratory diagnosis and molecular biology. Best Pract Res Clin Haematol 2001; 14 (02) 337-347
  • 75 Pavlova A, Delev D, Pezeshkpoor B, Müller J, Oldenburg J. Haemophilia A mutations in patients with non-severe phenotype associated with a discrepancy between one-stage and chromogenic factor VIII activity assays. Thromb Haemost 2014; 111 (05) 851-861
  • 76 Keeling DM, Sukhu K, Kemball-Cook G, Waseem N, Bagnall R, Lloyd JV. Diagnostic importance of the two-stage factor VIII:C assay demonstrated by a case of mild haemophilia associated with His1954–>Leu substitution in the factor VIII A3 domain. Br J Haematol 1999; 105 (04) 1123-1126