RSS-Feed abonnieren
DOI: 10.1055/a-1942-6693
Hepatocellular Carcinoma Chemoprevention with Generic Agents
Funding Funding received from Cancer Prevention and Research Institute of Texas (RR180016, RP200554); U.S. Department of Health and Human Services, National Institutes of Health, Center for Scientific Review (CA233794, CA127003, CA226052, CA255621, DK122104); European Commission (ERC-2014-AdG-671231, ERC-2020-ADG-101021417)
Abstract
Liver cancer, mainly hepatocellular carcinoma (HCC), remains a major cause of cancer-related death worldwide. With the global epidemic of obesity, the major HCC etiologies have been dynamically shifting from viral to metabolic liver diseases. This change has made HCC prevention difficult with increasingly elusive at-risk populations as rational target for preventive interventions. Besides ongoing efforts to reduce obesity and metabolic disorders, chemoprevention in patients who already have metabolic liver diseases may have a significant impact on the poor HCC prognosis. Hepatitis B– and hepatitis C–related HCC incidences have been substantially reduced by the new antivirals, but HCC risk can persist over a decade even after successful viral treatment, highlighting the need for HCC-preventive measures also in these patients. Experimental and retrospective studies have suggested potential utility of generic agents such as lipophilic statins and aspirin for HCC chemoprevention given their well-characterized safety profile, although anticipated efficacy may be modest. In this review, we overview recent clinical and translational studies of generic agents in the context of HCC chemoprevention under the contemporary HCC etiologies. We also discuss newly emerging approaches to overcome the challenges in clinical testing of the agents to facilitate their clinical translation.
Publikationsverlauf
Accepted Manuscript online:
14. September 2022
Artikel online veröffentlicht:
14. Oktober 2022
© 2022. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Ferlay J, Colombet M, Soerjomataram I. et al. Cancer statistics for the year 2020: an overview. Int J Cancer 2021; 149: 778-789 DOI: 10.1002/ijc.33588.
- 2 Lee YT, Wang JJ, Luu M. et al. State-level HCC incidence and association with obesity and physical activity in the United States. Hepatology 2021; 74 (03) 1384-1394
- 3 Reig M, Forner A, Rimola J. et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol 2022; 76 (03) 681-693
- 4 Lee YT, Wang JJ, Luu M. et al. The mortality and overall survival trends of primary liver cancer in the United States. J Natl Cancer Inst 2021; 113 (11) 1531-1541
- 5 Huang DQ, Singal AG, Kono Y, Tan DJH, El-Serag HB, Loomba R. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metab 2022; 34 (07) 969-977.e2
- 6 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64 (01) 73-84
- 7 Liu J, Ayada I, Zhang X. et al. Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults. Clin Gastroenterol Hepatol 2022; 20 (03) e573-e582
- 8 Fujiwara N, Friedman SL, Goossens N, Hoshida Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 2018; 68 (03) 526-549
- 9 Baumert TF, Jühling F, Ono A, Hoshida Y. Hepatitis C-related hepatocellular carcinoma in the era of new generation antivirals. BMC Med 2017; 15 (01) 52
- 10 Lockart I, Yeo MGH, Hajarizadeh B, Dore GJ, Danta M. HCC incidence after hepatitis C cure among patients with advanced fibrosis or cirrhosis: a meta-analysis. Hepatology 2022; 76 (01) 139-154
- 11 Kim NJ, Vutien P, Cleveland E, Cravero A, Ioannou GN. Fibrosis stage-specific incidence of hepatocellular cancer after hepatitis C cure with direct-acting antivirals: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2022; (e-pub ahead of print). DOI: 10.1016/j.cgh.2022.04.013.
- 12 Tan DJH, Ng CH, Tay PWL. et al. Risk of hepatocellular carcinoma with tenofovir vs entecavir treatment for chronic hepatitis B virus: a reconstructed individual patient data meta-analysis. JAMA Netw Open 2022; 5 (06) e2219407
- 13 Nahon P, Vo Quang E, Ganne-Carrié N. Stratification of hepatocellular carcinoma risk following HCV eradication or HBV control. J Clin Med 2021; 10 (02) 353
- 14 Wen N, Cai Y, Li F. et al. The clinical management of hepatocellular carcinoma worldwide: a concise review and comparison of current guidelines: 2022 update. Biosci Trends 2022; 16 (01) 20-30
- 15 Parikh ND, Singal AG, Hutton DW. Cost effectiveness of regorafenib as second-line therapy for patients with advanced hepatocellular carcinoma. Cancer 2017; 123 (19) 3725-3731
- 16 Loomans-Kropp HA, Umar A. Cancer prevention and screening: the next step in the era of precision medicine. NPJ Precis Oncol 2019; 3: 3
- 17 Athuluri-Divakar SK, Hoshida Y. Generic chemoprevention of hepatocellular carcinoma. Ann N Y Acad Sci 2019; 1440 (01) 23-35
- 18 Lippman SM, Abate-Shen C, Colbert Maresso KL. et al. AACR white paper: shaping the future of cancer prevention - a roadmap for advancing science and public health. Cancer Prev Res (Phila) 2018; 11 (12) 735-778
- 19 Simon TG, Roelstraete B, Sharma R, Khalili H, Hagström H, Ludvigsson JF. Cancer risk in patients with biopsy-confirmed nonalcoholic fatty liver disease: a population-based cohort study. Hepatology 2021; 74 (05) 2410-2423
- 20 Sanyal AJ, Van Natta ML, Clark J. et al; NASH Clinical Research Network (CRN). Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N Engl J Med 2021; 385 (17) 1559-1569
- 21 Mittal S, El-Serag HB, Sada YH. et al. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2016; 14 (01) 124-31.e1
- 22 PDQ® Screening and Prevention Editorial Board. PDQ Levels of Evidence for Cancer Screening and Prevention Studies. Bethesda, MD: National Cancer Institute; ; Available at: https://www.cancer.gov/publications/pdq/levels-evidence/screening-prevention
- 23 Harris RP, Helfand M, Woolf SH. et al; Methods Work Group, Third US Preventive Services Task Force. Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med 2001; 20 (3, Suppl): 21-35
- 24 Shankaraiah RC, Gramantieri L, Fornari F, Sabbioni S, Callegari E, Negrini M. Animal models of hepatocellular carcinoma prevention. Cancers (Basel) 2019; 11 (11) 11
- 25 Lippman SM, Klein EA, Goodman PJ. et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2009; 301 (01) 39-51
- 26 Guirguis-Blake JM, Evans CV, Perdue LA, Bean SI, Senger CA. Aspirin use to prevent cardiovascular disease and colorectal cancer: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2022; 327 (16) 1585-1597
- 27 Bruix J, Poynard T, Colombo M. et al; EPIC3 Study Group. Maintenance therapy with peginterferon alfa-2b does not prevent hepatocellular carcinoma in cirrhotic patients with chronic hepatitis C. Gastroenterology 2011; 140 (07) 1990-1999
- 28 Di Bisceglie AM, Shiffman ML, Everson GT. et al; HALT-C Trial Investigators. Prolonged therapy of advanced chronic hepatitis C with low-dose peginterferon. N Engl J Med 2008; 359 (23) 2429-2441
- 29 Nakagawa S, Wei L, Song WM. et al; Precision Liver Cancer Prevention Consortium. Molecular liver cancer prevention in cirrhosis by organ transcriptome analysis and lysophosphatidic acid pathway inhibition. Cancer Cell 2016; 30 (06) 879-890
- 30 Fuchs BC, Hoshida Y, Fujii T. et al. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology 2014; 59 (04) 1577-1590
- 31 Deshmukh M, Nakagawa S, Higashi T. et al; Precision Liver Cancer Prevention Consortium. Cell type-specific pharmacological kinase inhibition for cancer chemoprevention. Nanomedicine 2018; 14 (02) 317-325
- 32 Li S, Ghoshal S, Sojoodi M. et al. Pioglitazone reduces hepatocellular carcinoma development in two rodent models of cirrhosis. J Gastrointest Surg 2019; 23 (01) 101-111
- 33 Sojoodi M, Wei L, Erstad DJ. et al. Epigallocatechin gallate induces hepatic stellate cell senescence and attenuates development of hepatocellular carcinoma. Cancer Prev Res (Phila) 2020; 13 (06) 497-508
- 34 Jühling F, Hamdane N, Crouchet E. et al. Targeting clinical epigenetic reprogramming for chemoprevention of metabolic and viral hepatocellular carcinoma. Gut 2021; 70 (01) 157-169
- 35 Crouchet E, Bandiera S, Fujiwara N. et al. A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nat Commun 2021; 12 (01) 5525
- 36 Kim MH, Kim MY, Salloum S. et al. Atorvastatin favorably modulates a clinical hepatocellular carcinoma risk gene signature. Hepatol Commun 2022; 6 (09) 2581-2593
- 37 Qian T, Fujiwara N, Koneru B. et al. Molecular signature predictive of long-term liver fibrosis progression to inform antifibrotic drug development. Gastroenterology 2022; 162 (04) 1210-1225
- 38 Fujiwara N, Kubota N, Crouchet E. et al. Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease. Sci Transl Med 2022; 14 (650) eabo4474
- 39 Wooden B, Goossens N, Hoshida Y, Friedman SL. Using big data to discover diagnostics and therapeutics for gastrointestinal and liver diseases. Gastroenterology 2017; 152 (01) 53-67.e3
- 40 Tran AA, Prasad V. Drug repurposing for cancer treatments: a well-intentioned, but misguided strategy. Lancet Oncol 2020; 21 (09) 1134-1136
- 41 Pushpakom S, Iorio F, Eyers PA. et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18 (01) 41-58
- 42 Breckenridge A, Jacob R. Overcoming the legal and regulatory barriers to drug repurposing. Nat Rev Drug Discov 2019; 18 (01) 1-2
- 43 Tziomalos K, Athyros VG, Paschos P, Karagiannis A. Nonalcoholic fatty liver disease and statins. Metabolism 2015; 64 (10) 1215-1223
- 44 Alipour Talesh G, Trézéguet V, Merched A. Hepatocellular carcinoma and statins. Biochemistry 2020; 59 (37) 3393-3400
- 45 Facciorusso A, Abd El Aziz MA, Singh S. et al. Statin use decreases the incidence of hepatocellular carcinoma: an updated meta-analysis. Cancers (Basel) 2020; 12 (04) 12
- 46 Wang Y, Wang W, Wang M, Shi J, Jia X, Dang S. A meta-analysis of statin use and risk of hepatocellular carcinoma. Can J Gastroenterol Hepatol 2022; 2022: 5389044
- 47 Fujiwara N, Kobayashi M, Fobar AJ. et al. A blood-based prognostic liver secretome signature and long-term hepatocellular carcinoma risk in advanced liver fibrosis. Med (N Y) 2021; 2 (07) 836-850.e10
- 48 Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol 2022; 18 (09) 525-539
- 49 Plaz Torres MC, Jaffe A, Perry R, Marabotto E, Strazzabosco M, Giannini EG. Diabetes medications and risk of HCC. Hepatology 2022
- 50 Wabitsch S, McCallen JD, Kamenyeva O. et al. Metformin treatment rescues CD8+ T-cell response to immune checkpoint inhibitor therapy in mice with NAFLD. J Hepatol 2022; 77 (03) 748-760
- 51 DePeralta DK, Wei L, Ghoshal S. et al. Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer 2016; 122 (08) 1216-1227
- 52 Li Q, Xu H, Sui C, Zhang H. Impact of metformin use on risk and mortality of hepatocellular carcinoma in diabetes mellitus. Clin Res Hepatol Gastroenterol 2022; 46 (02) 101781
- 53 Kramer JR, Natarajan Y, Dai J. et al. Effect of diabetes medications and glycemic control on risk of hepatocellular cancer in patients with nonalcoholic fatty liver disease. Hepatology 2022; 75 (06) 1420-1428
- 54 Arvind A, Memel ZN, Philpotts LL, Zheng H, Corey KE, Simon TG. Thiazolidinediones, alpha-glucosidase inhibitors, meglitinides, sulfonylureas, and hepatocellular carcinoma risk: a meta-analysis. Metabolism 2021; 120: 154780
- 55 Ricciotti E, Wangensteen KJ, FitzGerald GA. Aspirin in hepatocellular carcinoma. Cancer Res 2021; 81 (14) 3751-3761
- 56 Ishikawa H, Mutoh M, Sato Y. et al. Chemoprevention with low-dose aspirin, mesalazine, or both in patients with familial adenomatous polyposis without previous colectomy (J-FAPP Study IV): a multicentre, double-blind, randomised, two-by-two factorial design trial. Lancet Gastroenterol Hepatol 2021; 6 (06) 474-481
- 57 Malehmir M, Pfister D, Gallage S. et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med 2019; 25 (04) 641-655
- 58 Tan RZH, Lockart I, Abdel Shaheed C, Danta M. Systematic review with meta-analysis: the effects of non-steroidal anti-inflammatory drugs and anti-platelet therapy on the incidence and recurrence of hepatocellular carcinoma. Aliment Pharmacol Ther 2021; 54 (04) 356-367
- 59 Wang Y, Wang M, Liu C, Wang W, Shi J, Dang S. Aspirin use and the risk of hepatocellular carcinoma: a meta-analysis. J Clin Gastroenterol 2022; 56 (07) e293-e302
- 60 Koretz RL. Aspirin use is associated with reduced risk for hepatocellular carcinoma. Ann Intern Med 2022; 175 (07) JC83
- 61 Jang H, Lee YB, Moon H. et al. Aspirin use and risk of hepatocellular carcinoma in patients with chronic hepatitis B with or without cirrhosis. Hepatology 2022; 76 (02) 492-501
- 62 Chen H, Cai W, Chu ESH. et al. Hepatic cyclooxygenase-2 overexpression induced spontaneous hepatocellular carcinoma formation in mice. Oncogene 2017; 36 (31) 4415-4426
- 63 Xiong H, Li B, He J, Zeng Y, Zhang Y, He F. lncRNA HULC promotes the growth of hepatocellular carcinoma cells via stabilizing COX-2 protein. Biochem Biophys Res Commun 2017; 490 (03) 693-699
- 64 Xu Y, Zhao W, Xu J. et al. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget 2016; 7 (08) 8866-8878
- 65 Loo TM, Kamachi F, Watanabe Y. et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov 2017; 7 (05) 522-538
- 66 Takami Y, Eguchi S, Tateishi M. et al. A randomised controlled trial of meloxicam, a Cox-2 inhibitor, to prevent hepatocellular carcinoma recurrence after initial curative treatment. Hepatol Int 2016; 10 (05) 799-806
- 67 Marron TU, Schwartz M, Corbett V, Merad M. Neoadjuvant immunotherapy for hepatocellular carcinoma. J Hepatocell Carcinoma 2022; 9: 571-581
- 68 Marron TU, Fiel MI, Hamon P. et al. Neoadjuvant cemiplimab for resectable hepatocellular carcinoma: a single-arm, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 2022; 7 (03) 219-229
- 69 Kaseb AO, Hasanov E, Cao HST. et al. Perioperative nivolumab monotherapy versus nivolumab plus ipilimumab in resectable hepatocellular carcinoma: a randomised, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 2022; 7 (03) 208-218
- 70 Qiu SJ, Zhou ZG, Shen F. et al. A multicenter, randomized, observation-controlled clinical trial to evaluate the efficacy and safety of thymalfasin adjuvant therapy in patients with HBV-related HCC after curative resection - first announcement of the protocol. Expert Opin Biol Ther 2015; 15 (Suppl. 01) S133-S137
- 71 Linye H, Zijing X, Wei P, Chao H, Chuan L, Tianfu W. Thymosin alpha-1 therapy improves postoperative survival after curative resection for solitary hepatitis B virus-related hepatocellular carcinoma: a propensity score matching analysis. Medicine (Baltimore) 2021; 100 (20) e25749
- 72 Chang MH, You SL, Chen CJ. et al; Taiwan Hepatoma Study Group. Long-term effects of hepatitis B immunization of infants in preventing liver cancer. Gastroenterology 2016; 151 (03) 472-480.e1
- 73 Huang P, Liu M, Zang F. et al. The development of hepatocellular carcinoma in HCV-infected patients treated with DAA: a comprehensive analysis. Carcinogenesis 2018; 39 (12) 1497-1505
- 74 Chen LT, Chen MF, Li LA. et al; Disease Committee of Adjuvant Therapy for Postoperative Hepatocellular Carcinoma, Taiwan Cooperative Oncology Group, National Health Research Institutes, Zhunan, Taiwan. Long-term results of a randomized, observation-controlled, phase III trial of adjuvant interferon Alfa-2b in hepatocellular carcinoma after curative resection. Ann Surg 2012; 255 (01) 8-17
- 75 Bhurwal A, Rattan P, Yoshitake S. et al. Inverse association of coffee with liver cancer development: an updated systematic review and meta-analysis. J Gastrointestin Liver Dis 2020; 29 (03) 421-428
- 76 Deng Y, Huang J, Wong MCS. Associations between six dietary habits and risk of hepatocellular carcinoma: a Mendelian randomization study. Hepatol Commun 2022; 6 (08) 2147-2154
- 77 Kennedy OJ, Roderick P, Buchanan R, Fallowfield JA, Hayes PC, Parkes J. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose-response meta-analysis. BMJ Open 2017; 7 (05) e013739
- 78 European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu, European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol 2018; 69 (01) 182-236
- 79 Bamia C, Lagiou P, Jenab M. et al. Coffee, tea and decaffeinated coffee in relation to hepatocellular carcinoma in a European population: multicentre, prospective cohort study. Int J Cancer 2015; 136 (08) 1899-1908
- 80 Aleksandrova K, Bamia C, Drogan D. et al. The association of coffee intake with liver cancer risk is mediated by biomarkers of inflammation and hepatocellular injury: data from the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 2015; 102 (06) 1498-1508
- 81 Xiao Q, Sinha R, Graubard BI, Freedman ND. Inverse associations of total and decaffeinated coffee with liver enzyme levels in National Health and Nutrition Examination Survey 1999-2010. Hepatology 2014; 60 (06) 2091-2098
- 82 Edling CE, Selvaggi F, Ghonaim R, Maffucci T, Falasca M. Caffeine and the analog CGS 15943 inhibit cancer cell growth by targeting the phosphoinositide 3-kinase/Akt pathway. Cancer Biol Ther 2014; 15 (05) 524-532
- 83 Duarte-Salles T, Fedirko V, Stepien M. et al. Dietary fat, fat subtypes and hepatocellular carcinoma in a large European cohort. Int J Cancer 2015; 137 (11) 2715-2728
- 84 Sawada N, Inoue M, Iwasaki M. et al; Japan Public Health Center-Based Prospective Study Group. Consumption of n-3 fatty acids and fish reduces risk of hepatocellular carcinoma. Gastroenterology 2012; 142 (07) 1468-1475
- 85 Moussa I, Day RS, Li R. et al. Association of dietary fat intake and hepatocellular carcinoma among US adults. Cancer Med 2021; 10 (20) 7308-7319
- 86 Jiao J, Kwan SY, Sabotta CM. et al. Circulating fatty acids associated with advanced liver fibrosis and hepatocellular carcinoma in South Texas Hispanics. Cancer Epidemiol Biomarkers Prev 2021; 30 (09) 1643-1651
- 87 Liebig M, Dannenberger D, Vollmar B, Abshagen K. n-3 PUFAs reduce tumor load and improve survival in a NASH-tumor mouse model. Ther Adv Chronic Dis 2019; 10: 2040622319872118
- 88 Zhang Y, Jiang X, Li X. et al. Serum vitamin D levels and risk of liver cancer: a systematic review and dose-response meta-analysis of cohort studies. Nutr Cancer 2021; 73 (08) 1-9
- 89 Bjelakovic G, Nikolova D, Bjelakovic M, Gluud C. Vitamin D supplementation for chronic liver diseases in adults. Cochrane Database Syst Rev 2017; 11: CD011564
- 90 Preziosi ME, Singh S, Valore EV. et al. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload. J Hepatol 2017; 67 (02) 360-369
- 91 Mancuso A. Evidence-based medicine and management of hepatocellular carcinoma in thalassemia. BMC Gastroenterol 2020; 20 (01) 409
- 92 Lo EKK, , Felicianna, Xu JH, Zhan Q, Zeng Z, El-Nezami H. The emerging role of branched-chain amino acids in liver diseases. Biomedicines 2022; 10 (06) 1444
- 93 Kawaguchi T, Shiraishi K, Ito T. et al. Branched-chain amino acids prevent hepatocarcinogenesis and prolong survival of patients with cirrhosis. Clin Gastroenterol Hepatol 2014; 12 (06) 1012-8.e1
- 94 Nojiri S, Fujiwara K, Shinkai N, Iio E, Joh T. Effects of branched-chain amino acid supplementation after radiofrequency ablation for hepatocellular carcinoma: a randomized trial. Nutrition 2017; 33: 20-27
- 95 Hachiya H, Aoki T, Iso Y. et al. Effects of branched-chain amino acids on postoperative tumor recurrence in patients undergoing curative resection for hepatocellular carcinoma: a randomized clinical trial. J Hepatobiliary Pancreat Sci 2020; 27 (11) 819-829
- 96 Ramani K, Robinson AE, Berlind J. et al. S-adenosylmethionine inhibits la ribonucleoprotein domain family member 1 in murine liver and human liver cancer cells. Hepatology 2022; 75 (02) 280-296
- 97 Morgan TR, Osann K, Bottiglieri T. et al. A phase II randomized, controlled trial of S-adenosylmethionine in reducing serum α-fetoprotein in patients with hepatitis C cirrhosis and elevated AFP. Cancer Prev Res (Phila) 2015; 8 (09) 864-872
- 98 Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem 2017; 60 (05) 1620-1637
- 99 Luo H, Tang L, Tang M. et al. Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis 2006; 27 (02) 262-268
- 100 Veldt BJ, Hansen BE, Ikeda K, Verhey E, Suzuki H, Schalm SW. Long-term clinical outcome and effect of glycyrrhizin in 1093 chronic hepatitis C patients with non-response or relapse to interferon. Scand J Gastroenterol 2006; 41 (09) 1087-1094
- 101 Teng CF, Yu CH, Chang HY. et al. Chemopreventive effect of phytosomal curcumin on hepatitis B virus-related hepatocellular carcinoma in a transgenic mouse model. Sci Rep 2019; 9 (01) 10338
- 102 Lim JY, Liu C, Hu KQ. et al. Xanthophyll β-cryptoxanthin inhibits highly refined carbohydrate diet-promoted hepatocellular carcinoma progression in mice. Mol Nutr Food Res 2020; 64 (03) e1900949
- 103 Chen Q, Shu C, Laurence AD. et al. Effect of Huaier granule on recurrence after curative resection of HCC: a multicentre, randomised clinical trial. Gut 2018; 67 (11) 2006-2016
- 104 Qian T, Zhu S, Hoshida Y. Use of big data in drug development for precision medicine: an update. Expert Rev Precis Med Drug Dev 2019; 4 (03) 189-200
- 105 Wang Z, Clark NR, Ma'ayan A. Drug-induced adverse events prediction with the LINCS L1000 data. Bioinformatics 2016; 32 (15) 2338-2345
- 106 Luo Q, Mo S, Xue Y. et al. Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes. BMC Bioinformatics 2021; 22 (01) 318
- 107 Geissler EK, Schnitzbauer AA, Zülke C. et al. Sirolimus use in liver transplant recipients with hepatocellular carcinoma: a randomized, multicenter, open-label phase 3 trial. Transplantation 2016; 100 (01) 116-125
- 108 Schnitzbauer AA, Filmann N, Adam R. et al. mTOR inhibition is most beneficial after liver transplantation for hepatocellular carcinoma in patients with active tumors. Ann Surg 2020; 272 (05) 855-862
- 109 Crouchet E, Li S, Sojoodi M. et al. Hepatocellular carcinoma chemoprevention by targeting the angiotensin-converting enzyme and EGFR transactivation. JCI Insight 2022; 7 (13) 7
- 110 Asgharzadeh F, Jafarzadeh-Esfehani R, Hassanian SM, Ferns GA, Avan A, Khazaei M. Renin-angiotensin system inhibitors and development of hepatocellular carcinoma: a systematic review and meta-analysis. Curr Pharm Des 2020; 26 (39) 5079-5085
- 111 Kim KM, Roh JH, Lee S, Yoon JH. Do renin-angiotensin system inhibitors reduce risk for hepatocellular carcinoma?: A nationwide nested case-control study. Clin Res Hepatol Gastroenterol 2021; 45 (04) 101510
- 112 Zhang X, Wong GL, Yip TC. et al. Angiotensin-converting enzyme inhibitors prevent liver-related events in nonalcoholic fatty liver disease. Hepatology 2022; 76 (02) 469-482
- 113 Ho CM, Lee CH, Lee MC. et al. Comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in chemoprevention of hepatocellular carcinoma: a nationwide high-risk cohort study. BMC Cancer 2018; 18 (01) 401
- 114 Yoshiji H, Noguchi R, Toyohara M. et al. Combination of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates cumulative recurrence of hepatocellular carcinoma. J Hepatol 2009; 51 (02) 315-321
- 115 Yoshiji H, Noguchi R, Ikenaka Y. et al. Combination of branched-chain amino acids and angiotensin-converting enzyme inhibitor suppresses the cumulative recurrence of hepatocellular carcinoma: a randomized control trial. Oncol Rep 2011; 26 (06) 1547-1553
- 116 Facciorusso A, Del Prete V, Crucinio N. et al. Angiotensin receptor blockers improve survival outcomes after radiofrequency ablation in hepatocarcinoma patients. J Gastroenterol Hepatol 2015; 30 (11) 1643-1650