Synthesis 2023; 55(01): 121-130
DOI: 10.1055/a-1941-1242
paper

An Efficient One-Pot Synthesis of 1-Aminophosphonates

a   Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, 45137-66731 Zanjan, Iran
,
Samaneh Faghih
a   Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, 45137-66731 Zanjan, Iran
b   Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
,
Sajedeh Alavi
a   Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, 45137-66731 Zanjan, Iran
,
b   Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
,
Alireza Fattahi
c   Faculty of Chemistry, Sharif University of Technology, P. O. Box 11365-9516, Tehran, Iran
› Author Affiliations
The Iran National Science Foundation (98024981) and Institute for Advanced Studies in Basic Sciences are thanked for supporting this work.


Abstract

1-Aminophosphonates are valuable compounds with wide range of applications in biological and industry. Various reaction conditions and catalysts have been reported for the synthesis of 1-aminophosphonates via three-component (dialkyl phosphite + aldehyde + amine) or two-component reaction (dialkyl phosphite + imine). Here a solvent-free synthesis of 1-aminophosphonates under very mild reaction conditions is reported. The three-component condensation reactions of dialkyl phosphite, carbonyl compound, and an amine gave 1-aminophosphonates in good to excellent yields under solvent- and catalyst-free conditions at ambient temperature. Hydrophosphorylation of imines in the presence of dialkyl phosphite under the same conditions gave also 1-aminophosphonates in good to excellent yields. These results showed that the reaction needs no catalyst or solvent for activation. It seems a tautomeric form of dialkyl phosphite (as one of the components) catalyzed the reaction. The reaction yield decreased using any solvent. In addition, a novel method is reported for the synthesis of N-deprotected 1-aminophosphonates (analogues of 1-amino acids) from N-PMP 1-aminophosphonate in the presence of TCCA. To understand the activity of the dialkyl phosphite under solvent-free conditions, the DFT calculations have provided insight into the basis of this activity.

Supporting Information



Publication History

Received: 17 August 2022

Accepted after revision: 12 September 2022

Accepted Manuscript online:
12 September 2022

Article published online:
10 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For example:
    • 1a Clark JH. Green Chem. 1999; 1: 1
    • 1b Sheldon AR. Green Chem. 2005; 7: 267
    • 1c Song CE, Lee SG. Chem. Rev. 2002; 102: 3495
    • 1d Trakhtenberg S, Warner JC. Chem Rev. 2007; 107: 2174
    • 1e Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT. Chem. Rev. 2007; 107: 2300
    • 1f Li C.-J, Trost BM. Proc. Natl. Acad. Sci U. S. A. 2008; 105: 13197
    • 1g Ganesh KN, Zhang D, Miller SC, Rossen K, Chirik PJ, Kozlowski MC, Zimmerman JB, Brooks BW, Savage PE, Allen DT, Voutchhkova-Kostl AM. Org. Process Res. Dev. 2021; 25: 1455

      For example:
    • 2a Varrma PS. ACS Sustainable Chem. Eng. 2016; 4: 5866
    • 2b Feng J, Xu X, Zu Z, Xie H, Song P, Li L, Huang G, Wang H. ACS Sustainable Chem. Eng. 2020; 8: 16612
    • 2c Sarkar A, Santa S, Kundu SK, Hajra A, Zyryanov GV, Chupakin ON, Charushin VN, Majee A. Green Chem. 2016; 18: 4475

      For example:
    • 3a Kudzin ZH, Kudzin MH, Drabowicz J, Stevens C. Curr. Org. Chem. 2011; 15: 2015
    • 3b Sevrain CM, Berchel M, Couthon H, Jaffres P.-A. Beilstein J. Org. Chem. 2017; 13: 2186
    • 3c Rapp M, Margas-Musielak K, Kaczmarek P, Witkowska A, Cytlak T, Siodta T, Koroniak H. Front. Chem. 2021; 9: 613633
    • 4a Kukhar VP, Hudson HR. Aminophosphonic and Aminophosphinic Acids. Chemistry and Biological Activity. Wiley; New York: 2000
    • 4b Kaboudin B, Daliri P, Faghih S, Esfandiari H. Front. Chem. 2022; 10: 890696
  • 5 Wanat W, Talma M, Dziuk B, Pirat J.-L, Kafarski P. Biomolecules 2020; 10: 579
    • 6a Kabachnik MI, Medved TY. Dokl. Akad. Nauk SSSR 1952; 83: 689
    • 6b Fields E. J. Am. Chem. Soc. 1952; 74: 1528
    • 6c Shilpa T, Harry NA, Ujwaldev SM, Anilkumar G. ChemistrySelect 2020; 5: 4422
  • 8 Ranu BC, Hajra A, Jana U. Org. Lett. 1999; 1: 1141
    • 9a Zon J. Pol. J. Chem. 1981; 55: 643
    • 9b Disale ST, Kale SR, Kahandal SS, Srinvasan TG, Jayaram RV. Tetrahedron Lett. 2012; 53: 2277
    • 9c Essid I, Touil S. Curr. Org. Synth. 2017; 14: 272
  • 10 Dai Y, Zhen L, Chakraborty D, Borhan B, Wulff WD. Chem. Sci. 2021; 12: 12333
  • 11 Hou J.-T, Gao J.-W, Zhang Z.-H. Appl. Organomet. Chem. 2010; 25: 47
  • 12 Garifzyanov AR, Koshkin SA. Phosphorus, Sulfur Silicon Relat. Elem. 2011; 186: 782
  • 13 Kaboudin B, Jafari E. Synlett 2008; 1837
  • 14 Che J.-Y, Xu X.-Y, Tang Z.-L, Gu Y.-C, Shi D.-Q. Bioorg. Med. Chem. Lett. 2016; 26: 1310
  • 15 Agawane SM, Nagarkar JM. Tetrahedron Lett. 2011; 52: 3499
  • 16 Gundluru M, Badavath VN, Shaik HY, Sudileti M, Nemallapudi BR, Gundala S, Zyryanov GV, Cirandur SR. Res. Chem. Intermed. 2021; 47: 1139
  • 17 Ravi N, Venkatanarayana M, Sharathbabu H, Babu KR. Phosphorus, Sulfur Silicon Relat. Elem. 2021; 196: 1018
  • 18 Varga PR, Keglevich G. Molecules 2021; 26: 2511
    • 19a Kaboudin B, Nazari R. Tetrahedron Lett. 2001; 42: 8211
    • 19b Ranu BC, Hajra A. Green Chem. 2002; 4: 551
  • 20 Gangireddy CS. R, Chinthaparthi RR, Mudumala VR, Mamilla M, Arigala UR. S. Heteroat. Chem. 2014; 25: 147
    • 21a Bálint E, Tajti A, Ádám A, Csontos I, Karaghiosoff K, Czugler M, Ábrányi-Balogh P, Keglevich G. Beilstein J. Org. Chem. 2017; 13: 76
    • 21b Beach LK, Drogin R, Shewmaker J. Ind. Eng. Chem. Prod. Res. Dev. 1963; 2: 145
  • 22 Grayson M, Fareley CF, Strenli CA. Tetrahedron 1967; 23: 1065
  • 23 Doak G, Freedman L. Chem. Rev. 1961; 61: 31
  • 24 Chandrasekhar S, Narsihmulu C, Shameem Sultana S, Saritha B, Jaya Prakash S. Synlett 2003; 505
  • 25 Berchel M, Akhter S, Berthe W, Goncalves C, Dubuisson M, Pichon C, Jaffres P.-A, Midoux P. J. Mater. Chem. B 2017; 5: 6869
  • 26 Hasegawa A, Naganawa Y, Fushimi M, Ishihara K, Yamamoto H. Org. Lett. 2006; 8: 3175
  • 27 Gao G, Chen MN, Mo LP, Zhang ZH. Phosphorus, Sulfur Silicon Relat. Elem. 2019; 194: 528
  • 28 Tang J, Wang L, Wang W, Zhang L, Wu S, Mao D. J. Fluorine Chem. 2011; 132: 102
  • 29 Kolodyazhnaya AO, Kolodyazhnaya OO, Kolodyazhnyi OI. Russ. J. Gen. Chem. 2010; 80: 709
  • 30 Kabachnik MM, Ternovskaya TN, Zobnina EV, Beletskaya IP. Russ. J. Org. Chem. 2002; 38: 484
  • 31 Kaboudin B. Tetrahedron Lett. 2003; 44: 1051
  • 32 Yusupov MM, Razhabov A, Iskandarov RS, Abdusamatov AA. J. Gen. Chem. USSR 1992; 62: 461
  • 33 Kabachnik MM, Zobnina EV, Beletskaya IP. Synlett 2005; 1393
  • 34 Sal’keeva LK, Nurmaganbetova MT, Kurmanaliev OS, Gazizov TK. Russ. J. Org. Chem. 2002; 38: 723
  • 35 de Oliveira AR, Katla R, Rocha MP, Albuquerque TB, da Silva CD, Kupfer VL, Rinaldi AW, Domingues NL. C. Synthesis 2016; 48: 4489
  • 36 Rostamizadeh M, Maghsoodlou MT, Hazeri N, Habibi-khorasani SM, Keishams L. Phosphorus, Sulfur Silicon Relat. Elem. 2011; 186: 334
  • 37 Cabrita IR, Sousa SC, Florindo PR, Fernandes AC. Tetrahedron 2018; 74: 1817
  • 38 Rasal S, Jain S, Shimpi NG. Synth. Commun. 2018; 48: 2420
  • 39 Jafari AA, Nazarpour M, Abdollahi-Alibeik M. Heteroat. Chem. 2010; 21: 397
  • 40 Piri T, Peymanfar R, Javanshir S, Amirnejat S. Catal. Lett. 2019; 149: 3384
  • 41 Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM. Tetrahedron 2013;  69: 4708
  • 42 Firouzabadi H, Iranpoor N, Sobhani S. Synthesis 2004; 2692
  • 43 Yadav JS, Reddy BV. S, Raj KS, Reddy KB, Prasad AR. Synthesis 2001; 2277
  • 44 Boduszek B, Halama A. Phosphorus, Sulfur Silicon Relat. Elem. 1998; 141: 239
  • 45 Vanderhoydonck B, Stevens CV. Synthesis 2004; 722
  • 46 Kochmann W, Günther E, Röthling T. Z. Chem. 1976; 16: 184