Subscribe to RSS
DOI: 10.1055/a-1940-0553
Sauerstofftherapie in der Intensivmedizin
Oxygen therapy in intensive careWas ist neu?
Pulsoxymetrie und Blutgasanalysen Die Pulsoxymetrie hat eine hohe Sensitivität, aber nur eine geringe Spezifität zur Erfassung von Hypoxämien. Arterielle Blutgasanalysen sind der Goldstandard zur Überwachung einer O2-Therapie. Venöse Blutgasanalysen sollten zur O2-Steuerung nicht zum Einsatz kommen.
Zielwerte der O2-Therapie Der Zielbereich der akuten O2-Therapie für beatmete Patienten und nicht beatmete Patienten ohne Hyperkapnie-Risiko soll bei einer pulsoxymetrisch gemessenen Sauerstoffsättigung (SpO2) zwischen 92% und 96% liegen. Indikationen einer hochdosierten O2-Therapie ohne Zielbereich sind in der Intensivmedizin die Kohlenmonoxidvergiftung und Patienten mit schwerer Atemnot, wenn keine SpO2 ableitbar ist. Eine Hyperoxämie, d.h. SpO2-Werte über 96%, hat in randomisierten Studien an überwiegend beatmeten Intensivpatienten das Überleben nicht verbessert. Unter einer Hyperoxämie bei nicht beatmeten Patienten mit Hyperkapnie-Risiko (z.B. Patienten mit chronisch-obstruktiver Lungenerkrankung) besteht bei jedem dritten Patienten das Risiko eines zunehmenden Kohlendioxidanstiegs. Deswegen soll bei diesen Patienten eine Ziel-SpO2 von 88–92% angestrebt werden.
O2-Zielbereiche an extrakorporalen Verfahren Es gibt keine randomisierten Studien, die andere SpO2-Zielbereiche für Patienten an extrakorporalen Verfahren empfehlen. Diese Patienten sollen immer mit arteriellen Blutgasen – bei peripherer VA-ECMO am rechten Arm und hinter dem Oxygenator – überwacht werden.
High-Flow-Sauerstoff-Therapie beim akuten hyperkapnischen Atemversagen Die High-Flow-Sauerstoff-Therapie (HFNC) war in einer Metaanalyse überwiegend bei Patienten mit akuter Hypoxämie (Typ-I-Atemversagen) gegenüber konventionellem O2 nicht mit einer reduzierten Krankenhaussterblichkeit assoziiert, allerdings wurde die Intubationsrate reduziert. Auch beim moderaten hyperkapnischen Atemversagen (Typ II) ist die HFNC mit hohen Flussraten der nicht invasiven Beatmung (NIV) nicht unterlegen.
Abstract
Pulse oximetry and blood gas analyses Pulse oximetry has high sensitivity but low specificity for detecting hypoxemia. Arterial blood gas analyses are the gold standard for monitoring O2 therapy. Venous blood gas analyses should not be used in this setting.
Target values of O2 therapy The target range of acute O2 therapy for ventilated patients and nonventilated patients not at risk of hypercapnia should be between 92% and 96% for oxygen saturation (SpO2) measured by pulse oximetry. Indications for high-dose O2 therapy without a target range in critical care include carbon monoxide poisoning and patients with severe respiratory distress when SpO2 cannot be derived. Hyperoxemia, i.e., SpO2 values above 96%, has not improved survival in randomized trials of predominantly ventilated ICU patients. Under hyperoxemia in nonventilated patients at risk of hypercapnia (e.g., patients with chronic obstructive pulmonary disease), one in three patients is at risk of increasing carbon dioxide. Therefore, a target SpO2 of 88–92% should be aimed for in these patients.
O2 target ranges on extracorporeal procedures There are no randomized studies recommending other SpO2 target ranges for patients on extracorporeal procedures. These patients should always be monitored with arterial blood gases-in the case of peripheral VA-ECMO on the right arm and downstream of the oxygenator.
High-flow oxygen therapy for acute hypercapnic respiratory failure High-flow oxygen therapy (HFNC) was not associated with reduced in-hospital mortality compared with conventional O2 in a meta-analysis of predominantly patients with acute hypoxemia (type I respiratory failure), although intubation rates were reduced. Also, in acute hypercapnic respiratory failure (type II), HFNC with high flow rates is not inferior to noninvasive ventilation (NIV).
Keywords
oxygen inhalation therapy - hypoxia - respiratory rate - pulse oximetry - positive-pressure respiration - high-flow oxygenPublication History
Article published online:
31 May 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Brownlee S, Chalkidou K, Doust J. et al. Evidence for overuse of medical services around the world. Lancet 2017; 390: 156-168 DOI: 10.1016/S0140-6736(16)32585-5. (PMID: 28077234)
- 2 Gottlieb J, Capetian P, Hamsen U. et al. German S3 Guideline – Oxygen Therapy in the Acute Care of Adult Patients. Pneumologie 2022; 76: 159-216 DOI: 10.1055/a-1554-2625. (PMID: 34474487)
- 3 Smith GB, Prytherch DR, Watson D. et al. S(p)O(2) values in acute medical admissions breathing air – implications for the British Thoracic Society guideline for emergency oxygen use in adult patients?. Resuscitation 2012; 83: 1201-1205 DOI: 10.1016/j.resuscitation.2012.06.002. (PMID: 22699210)
- 4 Ebmeier SJ, Barker M, Bacon M. et al. A two centre observational study of simultaneous pulse oximetry and arterial oxygen saturation recordings in intensive care unit patients. Anaesth Intensive Care 2018; 46: 297-303 DOI: 10.1177/0310057X1804600307. (PMID: 29716488)
- 5 Severinghaus JW. Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol Respir Environ Exerc Physiol 1979; 46: 599-602 DOI: 10.1152/jappl.1979.46.3.599. (PMID: 35496)
- 6 Sjoding MW, Dickson RP, Iwashyna TJ. et al. Racial Bias in Pulse Oximetry Measurement. N Engl J Med 2020; 383: 2477-2478 DOI: 10.1056/NEJMc2029240. (PMID: 33326721)
- 7 Henry NR, Hanson AC, Schulte PJ. et al. Disparities in Hypoxemia Detection by Pulse Oximetry Across Self-Identified Racial Groups and Associations With Clinical Outcomes. Crit Care Med 2022; 50: 204-211
- 8 Askie LM, Brocklehurst P, Darlow BA. et al. NeOProM: Neonatal Oxygenation Prospective Meta-analysis Collaboration study protocol. BMC Pediatr 2011; 11: 6 DOI: 10.1186/1471-2431-11-6. (PMID: 21235822)
- 9 Maitland K, Kiguli S, Olupot-Olupot P. et al. Randomised controlled trial of oxygen therapy and high-flow nasal therapy in African children with pneumonia. Intensive Care Med 2021; 47: 566-576
- 10 Kallet RH, Matthay MA. Hyperoxic acute lung injury. Respir Care 2013; 58: 123-141 DOI: 10.4187/respcare.01963. (PMID: 23271823)
- 11 Chu DK, Kim LHY, Young PJ. et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 2018; 391: 1693-1705
- 12 Panwar R, Hardie M, Bellomo R. et al. Conservative versus Liberal Oxygenation Targets for Mechanically Ventilated Patients. A Pilot Multicenter Randomized Controlled Trial. Am J Respir Crit Care Med 2016; 193: 43-51 DOI: 10.1164/rccm.201505-1019OC. (PMID: 26334785)
- 13 Girardis M, Busani S, Damiani E. et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit: The Oxygen-ICU Randomized Clinical Trial. JAMA 2016; 316: 1583-1589
- 14 Asfar P, Schortgen F, Boisrame-Helms J. et al. Hyperoxia and hypertonic saline in patients with septic shock (HYPERS2S): a two-by-two factorial, multicentre, randomised, clinical trial. Lancet Respir Med 2017; 5: 180-190
- 15 Mackle D, Bellomo R, Bailey M. ICU-ROX Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group. et al. Conservative Oxygen Therapy during Mechanical Ventilation in the ICU. N Engl J Med 2020; 382: 989-998 DOI: 10.1056/NEJMoa1903297. (PMID: 31613432)
- 16 Barrot L, Asfar P, Mauny F. et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N Engl J Med 2020; 382: 999-1008 DOI: 10.1056/NEJMoa1916431. (PMID: 32160661)
- 17 Schjorring OL, Klitgaard TL, Perner A. et al. Lower or Higher Oxygenation Targets for Acute Hypoxemic Respiratory Failure. N Engl J Med 2021; 384: 1301-1311 DOI: 10.1056/NEJMoa2032510. (PMID: 33471452)
- 18 Gelissen H, de Grooth HJ, Smulders Y. et al. Effect of Low-Normal vs High-Normal Oxygenation Targets on Organ Dysfunction in Critically Ill Patients. JAMA 2021; 326: 940-948 DOI: 10.1001/jama.2021.13011. (PMID: 34463696)
- 19 Semler MW, Casey JD, Lloyd BD. et al. Oxygen-Saturation Targets for Critically Ill Adults Receiving Mechanical Ventilation. N Engl J Med 2022; 387: 1759-1769 DOI: 10.1056/NEJMoa2208415. (PMID: 36278971)
- 20 Beasley R, Aldington S, Robinson G. Is it time to change the approach to oxygen therapy in the breathless patient?. Thorax 2007; 62: 840-841 DOI: 10.1136/thx.2006.068866. (PMID: 17909188)
- 21 Siemieniuk RAC, Chu DK, Kim LH. et al. Oxygen therapy for acutely ill medical patients: a clinical practice guideline. BMJ 2018; 363: k4169 DOI: 10.1136/bmj.k4169. (PMID: 30355567)
- 22 Wetterslev J, Meyhoff CS, Jorgensen LN. et al. The effects of high perioperative inspiratory oxygen fraction for adult surgical patients. Cochrane Database Syst Rev 2015; 2015: CD008884 DOI: 10.1002/14651858.CD008884.pub2. (PMID: 26110757)
- 23 Shou BL, Ong CS, Premraj L. et al. Arterial oxygen and carbon dioxide tension and acute brain injury in extracorporeal cardiopulmonary resuscitation patients: Analysis of the extracorporeal life support organization registry. J Heart Lung Transplant 2022; DOI: 10.1016/j.healun.2022.10.019.
- 24 Osadnik CR, Tee VS, Carson-Chahhoud KV. et al. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017; 7: CD004104 DOI: 10.1002/14651858.CD004104.pub4. (PMID: 28702957)
- 25 Austin MA, Wills KE, Blizzard L. et al. Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial. BMJ 2010; 341: c5462 DOI: 10.1136/bmj.c5462. (PMID: 20959284)
- 26 Kopsaftis Z, Carson-Chahhoud KV, Austin MA. et al. Oxygen therapy in the pre-hospital setting for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2020; 1: CD005534 DOI: 10.1002/14651858.CD005534.pub3. (PMID: 31934729)
- 27 Lewis SR, Baker PE, Parker R. et al. High-flow nasal cannulae for respiratory support in adult intensive care patients. Cochrane Database Syst Rev 2021; 3: CD010172 DOI: 10.1002/14651858.CD010172.pub3. (PMID: 33661521)
- 28 Ovtcharenko N, Ho E, Alhazzani W. et al. High-flow nasal cannula versus non-invasive ventilation for acute hypercapnic respiratory failure in adults: a systematic review and meta-analysis of randomized trials. Crit Care 2022; 26: 348 DOI: 10.1186/s13054-022-04218-3. (PMID: 36352457)
- 29 Cranston JM, Crockett A, Currow D. Oxygen therapy for dyspnoea in adults. Cochrane Database Syst Rev 2008; 3: CD004769 DOI: 10.1002/14651858.CD004769.pub2. (PMID: 18646110)
- 30 Uronis H, McCrory DC, Samsa G. et al. Symptomatic oxygen for non-hypoxaemic chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2011; 6: CD006429
- 31 Uronis HE, Currow DC, McCrory DC. et al. Oxygen for relief of dyspnoea in mildly- or non-hypoxaemic patients with cancer: a systematic review and meta-analysis. Br J Cancer 2008; 98: 294-299