Subscribe to RSS
DOI: 10.1055/a-1939-7686
Mixed Reality in der Gefäßchirurgie – ein Scoping Review
Mixed Reality in Vascular Surgery – a Scoping Review
Zusammenfassung
Hintergrund „Mixed Reality“ (MR) erlaubt die Projektion von virtuellen Objekten in das Sichtfeld des Anwenders durch ein Head-mounted Display (HMD). Im gefäßchirurgischen Behandlungsspektrum könnten MR-Anwendungen in Zukunft einen Nutzen darstellen. Im folgenden Scoping Review soll eine Orientierung über die aktuelle Anwendung der genannten Technologien im Bereich der Gefäßchirurgie gegeben und Forschungsziele für die Zukunft definiert werden. Material und Methoden Es erfolgte eine systematische Literaturrecherche in PubMed (MEDLINE) mit den Suchbegriffen „aorta“, „intervention“, „endovsacular intervention“, „vascular surgery“, „aneurysm“, „endovascular“, „vascular access“ jeweils in Kombination mit „mixed reality“ oder „augmented reality“. Die Suche erfolgte nach PRISMA-Leitlinie (Preferred Reporting Items for Systematic reviews and Meta-Analyses) für Scoping Reviews. Ergebnisse Aus 547 Literaturstellen konnten 8 relevante Studien identifiziert werden. Die Suchergebnisse konnten in 2 Anwendungskategorien eingeteilt werden: (1) MR mit dem Ziel des Informationsmanagements und zur Verbesserung der periprozeduralen Ergonomie gefäßchirurgischer Eingriffe (n = 3) sowie (2) MR mit dem Ziel der intraoperativen Navigation bei gefäßchirurgischen Eingriffen (n = 5). Die Registrierung des physischen Patienten mit dem virtuellen Objekt und das Tracking von Instrumenten in der MR-Umgebung zur intraoperativen Navigation ist dabei im Fokus des wissenschaftlichen Interesses und konnte technisch erfolgreich am Phantom- und Tiermodell gezeigt werden. Die bisher vorgestellten Methoden sind jedoch mit hohem infrastrukturellem Aufwand und relevanten Limitationen verbunden. Schlussfolgerung Der Einsatz von MR im Bereich der Gefäßchirurgie ist grundsätzlich vielversprechend. Für die Zukunft sollten alternative, pragmatische Registrierungsmethoden mit entsprechender Quantifizierung des Positionierungsfehlers angestrebt werden. Die entwickelten Soft- und Hardwarelösungen sollten auf das Anforderungsprofil der Gefäßchirurgie angepasst werden. Das elektromagnetische Instrumenten-Tracking erscheint als sinnvolle, komplementäre Technologie zur Umsetzung der MR-assistierten Navigation.
Abstract
Background “Mixed reality” (MR) allows the projection of virtual objects into the user’s field of view through a head-mounted display (HMD). In the interventional and surgical treatment of vascular diseases MR applications could be of future benefit. The following scoping review aims to provide orientation on the current application of the aforementioned technologies in the field of vascular surgery and to define research goals for the future. Methods A systematic literature search was performed in PubMed (MEDLINE) using the search terms “aorta”, “intervention”, “endovascular intervention”, “vascular surgery”, “aneurysm”, “endovascular”, “vascular access”, each in combination with “mixed reality” or “augmented reality”. The search was performed according to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines for scoping reviews. Results From 547 references 8 relevant studies were identified. The search results could be classified into two categories: (1) MR aimed at information management and improving periprocedural ergonomics (n = 3) and (2) MR aimed at intraoperative navigation (n = 5). The registration of the physical patient with the virtual object and the tracking of instruments in the MR environment for intraoperative navigation is currently the focus of scientific interest and could be demonstrated on phantom and animal models with technical success. However, the methods presented so far are associated with high infrastructural costs and important limitations. Conclusion The use of MR in the field of vascular surgery is promising. For the future, alternative, pragmatic registration methods with appropriate quantification of the positional error should be aimed at. The developed software and hardware solutions should be adapted to the requirements of vascular surgery. Electromagnetic instrument tracking appears to be a useful complementary technology for the implementation of MR-assisted navigation.
Schlüsselwörter
Mixed Reality - Virtual Reality - Augmented Reality - Gefäßchirurgie - Chirurgie - endovaskulärKeywords
Mixed Reality - Virtual Reality - Augmented Reality - vascular surgery - surgery - navigationPublication History
Received: 29 June 2022
Accepted after revision: 06 September 2022
Article published online:
11 October 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Milgram P, Takemura H, Utsumi A. et al. Augmented reality: a class of displays on the reality-virtuality continuum. Proc SPIE; 1995. Accessed September 15, 2022 at: https://doi.org/10.1117/12.197321
- 2 Böckler D, Geisbüsch P, Hatzl J. et al. Erste Anwendungsoptionen von künstlicher Intelligenz und digitalen Systemen im gefäßchirurgischen Hybridoperationssaal der nahen Zukunft. Gefässchirurgie 2020; 25: 317-323
- 3 Aguilar-Salinas P, Gutierrez-Aguirre SF, Avila MJ. et al. Current status of augmented reality in cerebrovascular surgery: a systematic review. Neurosurg Rev 2022; 45: 1951-1964
- 4 Ahmad HS, Yoon JW. Intra-operative wearable visualization in spine surgery: past, present, and future. J Spine Surg 2022; 8: 132-138
- 5 Arjomandi Rad A, Vardanyan R, Thavarajasingam SG. et al. Extended, virtual and augmented reality in thoracic surgery: a systematic review. Interact Cardiovasc Thorac Surg 2022; 34: 201-211
- 6 Bertolo R, Hung A, Porpiglia F. et al. Systematic review of augmented reality in urological interventions: the evidences of an impact on surgical outcomes are yet to come. World J Urol 2020; 38: 2167-2176
- 7 Vles MD, Terng NCO, Zijlstra K. et al. Virtual and augmented reality for preoperative planning in plastic surgical procedures: A systematic review. J Plast Reconstr Aesthet Surg 2020; 73: 1951-1959
- 8 Fida B, Cutolo F, di Franco G. et al. Augmented reality in open surgery. Updates Surg 2018; 70: 389-400
- 9 Park BJ, Hunt SJ, Martin 3rd C. et al. Augmented and Mixed Reality: Technologies for Enhancing the Future of IR. J Vasc Interv Radiol 2020; 31: 1074-1082
- 10 Groves L, Li N, Peters TM. et al. Towards a First-Person Perspective Mixed Reality Guidance System for Needle Interventions. J Imaging 2022; 8: 7
- 11 Rochlen LR, Levine R, Tait AR. First-Person Point-of-View-Augmented Reality for Central Line Insertion Training: A Usability and Feasibility Study. Simul Healthc 2017; 12: 57-62
- 12 Jeon Y, Choi S, Kim H. Evaluation of a simplified augmented reality device for ultrasound-guided vascular access in a vascular phantom. J Clin Anesth 2014; 26: 485-489
- 13 Huang CY, Thomas JB, Alismail A. et al. The use of augmented reality glasses in central line simulation: "see one, simulate many, do one competently, and teach everyone". Adv Med Educ Pract 2018; 9: 357-363
- 14 Suzuki K, Morita S, Endo K. et al. Learning effectiveness of using augmented reality technology in central venous access procedure: an experiment using phantom and head-mounted display. Int J Comput Assist Radiol Surg 2021; 16: 1069-1074
- 15 Privorotskiy A, Garcia VA, Babbitt LE. et al. Augmented reality in anesthesia, pain medicine and critical care: a narrative review. J Clin Monit Comput 2022; 36: 33-39
- 16 Lareyre F, Chaudhuri A, Adam C. et al. Applications of Head-Mounted Displays and Smart Glasses in Vascular Surgery. Ann Vasc Surg 2021; 75: 497-512
- 17 Zammit C, Calleja-Agius J, Azzopardi E. Augmented Reality for Teaching Anatomy. Clin Anat 2022; 35: 824-827
- 18 Barsom EZ, Graafland M, Schijven MP. Systematic review on the effectiveness of augmented reality applications in medical training. Surg Endosc 2016; 30: 4174-4183
- 19 Tricco AC, Lillie E, Zarin W. et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med 2018; 169: 467-473
- 20 Mialhe C, Raffort J, Lareyre F. Holographic Imaging with the HoloLens Head Mounted System to Enhance Angio Suite Ergonomics During an Endovascular Procedure. Eur J Vasc Endovasc Surg 2021; 61: 849-850
- 21 Rynio P, Witowski J, Kamiński J. et al. Holographically-Guided Endovascular Aneurysm Repair. J Endovasc Ther 2019; 26: 544-547
- 22 Hatzl J, Böckler D, Hartmann N. et al. Mixed reality for the assessment of aortoiliac anatomy in patients with abdominal aortic aneurysm prior to open and endovascular repair: Feasibility and interobserver agreement. Vascular 2022;
- 23 Kuhlemann I, Kleemann M, Jauer P. et al. Towards X-ray free endovascular interventions – using HoloLens for on-line holographic visualisation. Healthc Technol Lett 2017; 4: 184-187
- 24 Lu W, Wang L, Zhou W. et al. Augmented reality navigation to assist retrograde peroneal access for the endovascular treatment of critical limb ischemia. J Vasc Surg Cases Innov Tech 2019; 5: 518-520
- 25 Uhl C, Hatzl J, Meisenbacher K. et al. Mixed-Reality-Assisted Puncture of the Common Femoral Artery in a Phantom Model. J Imaging 2022; 8: 47
- 26 West K, Al-Nimer S, Goel VR. et al. Three-Dimensional Holographic Guidance, Navigation, and Control (3D-GNC) for Endograft Positioning in Porcine Aorta: Feasibility Comparison With 2-Dimensional X-Ray Fluoroscopy. J Endovasc Ther 2021; 28: 796-803
- 27 Gao MK, Chen YM, Liu Q. et al. Three-Dimensional Path Planning and Guidance of Leg Vascular Based on Improved Ant Colony Algorithm in Augmented Reality. J Med Syst 2015; 39: 133
- 28 García-Vázquez V, von Haxthausen F, Jäckle S. et al. Navigation and visualisation with HoloLens in endovascular aortic repair. Innov Surg Sci 2018; 3: 167-177
- 29 U.S. Food & Drug Administration. 510(k) Premarket Notification (K192703): Cranial Image Guided Surgery System. Brainlab AG; 2020 Accessed September 15, 2022 at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K192703
- 30 Pérez-Pachón L, Sharma P, Brech H. et al. Effect of marker position and size on the registration accuracy of HoloLens in a non-clinical setting with implications for high-precision surgical tasks. Int J Comput Assist Radiol Surg 2021; 16: 955-966
- 31 de Lambert A, Esneault S, Lucas A. et al. Electromagnetic tracking for registration and navigation in endovascular aneurysm repair: a phantom study. Eur J Vasc Endovasc Surg 2012; 43: 684-689
- 32 Wood BJ, Zhang H, Durrani A. et al. Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 2005; 16: 493-505
- 33 Schwein A, Kramer B, Chinnadurai P. et al. Electromagnetic tracking of flexible robotic catheters enables “assisted navigation” and brings automation to endovascular navigation in an in vitro study. J Vasc Surg 2018; 67: 1274-1281
- 34 Manstad-Hulaas F, Ommedal S, Tangen GA. et al. Side-branched AAA stent graft insertion using navigation technology: a phantom study. Eur Surg Res 2007; 39: 364-371
- 35 Penzkofer T, Na HS, Isfort P. et al. Electromagnetically Navigated In Situ Fenestration of Aortic Stent Grafts: Pilot Animal Study of a Novel Fenestrated EVAR Approach. Cardiovasc Intervent Radiol 2018; 41: 170-176
- 36 Pratt P, Ives M, Lawton G. et al. Through the HoloLens™ looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels. Eur Radiol Exp 2018; 2: 2
- 37 Jiang T, Yu D, Wang Y. et al. HoloLens-Based Vascular Localization System: Precision Evaluation Study With a Three-Dimensional Printed Model. J Med Internet Res 2020; 22: e16852
- 38 Manstad-Hulaas F, Tangen GA, Dahl T. et al. Three-dimensional electromagnetic navigation vs. fluoroscopy for endovascular aneurysm repair: a prospective feasibility study in patients. J Endovasc Ther 2012; 19: 70-78