Planta Med 2023; 89(04): 408-415
DOI: 10.1055/a-1923-4399
Biological and Pharmacological Activity
Original Papers

Resveratrol Protects BEAS-2B Cells against Erastin-Induced Ferroptosis through the Nrf2/Keap1 Pathway

Wenhan Huang
1   The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
,
Liuda Yu
1   The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
,
Wanru Cai
1   The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
,
Chunfang Ma
2   Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial Peopleʼs Hospital, Affiliated Peopleʼs Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
› Author Affiliations
Supported by: Zhejiang Provincial Medicine and Health Research Foundation 2020374897
Supported by: National Natural Science Foundation of China 81774220

Abstract

Ferroptosis is a newly discovered type of cell death that is different from other types of cell death morphologically and biologically. It is considered to play an important role in many pulmonary diseases. Currently, the regulatory roles of antioxidation in lung epithelial ferroptosis have not been fully explored. In this study, we show that resveratrol protected erastin-induced ferroptosis in BEAS-2B cells. Erastin led to increased reactive oxygen species production and iron deposition in BEAS-2B cells, which could be rescued by resveratrol. Furthermore, we observed that resveratrol led to modulating ferroptosis-associated gene glutathione peroxidase 4 expression and regulating glutathione in BEAS-2B cells. Resveratrol exerted an antioxidant property in erastin-induced ferroptosis of BEAS-2B cells by activating the nuclear factor-erythroid 2-related factor 2/Kelch-like ECH-associated protein signaling pathway. Finally, these findings demonstrate that resveratrol protects BEAS-2B from erastin-induced ferroptosis.



Publication History

Received: 18 April 2022

Accepted after revision: 03 August 2022

Article published online:
27 September 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison 3rd B, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149: 1060-1072
  • 2 Qu M, Zhang H, Chen Z, Sun X, Zhu S, Nan K, Chen W, Miao C. The role of ferroptosis in acute respiratory distress syndrome. Front Med (Lausanne) 2021; 8: 651552
  • 3 Wen X, Wu J, Wang F, Liu B, Huang C, Wei Y. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med 2013; 65: 402-410
  • 4 Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 2021; 22: 266-282
  • 5 Chen QM. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med 2022; 179: 133-143
  • 6 Tao W, Wang N, Ruan J, Cheng X, Fan L, Zhang P, Lu C, Hu Y, Che C, Sun D, Duan J, Zhao M. Enhanced ROS-boosted phototherapy against pancreatic cancer via Nrf2-mediated stress-defense pathway suppression and ferroptosis induction. ACS Appl Mater Interfaces 2022; 14: 6404-6416
  • 7 Horie Y, Suzuki T, Inoue J, Iso T, Wells G, Moore TW, Mizushima T, Dinkova-Kostova AT, Kasai T, Kamei T, Koshiba S, Yamamoto M. Molecular basis for the disruption of Keap1-Nrf2 interaction via Hinge & Latch mechanism. Commun Biol 2021; 4: 576
  • 8 Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 2019; 5: 23
  • 9 Takaoka M. The phenolic substances of white Hellebore (Veratrum grandiflorum Hoes. Fil.) I. Nippon Kagaku Kaishi 1939; 60: 1090-1100
  • 10 Gurusinghe S, Cox AG, Rahman R, Chan ST, Muljadi R, Singh H, Leaw B, Mockler JC, Marshall SA, Murthi P, Lim R, Wallace EM. Resveratrol mitigates trophoblast and endothelial dysfunction partly via activation of nuclear factor erythroid 2-related factor-2. Placenta 2017; 60: 74-85
  • 11 de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 2007; 35 (Pt. 5): 1156-1160
  • 12 Jimenez-Gomez Y, Mattison JA, Pearson KJ, Martin-Montalvo A, Palacios HH, Sossong AM, Ward TM, Younts CM, Lewis K, Allard JS, Longo DL, Belman JP, Malagon MM, Navas P, Sanghvi M, Moaddel R, Tilmont EM, Herbert RL, Morrell CH, Egan JM, Baur JA, Ferrucci L, Bogan JS, Bernier M, de Cabo R. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab 2013; 18: 533-545
  • 13 Qin F, Siwik DA, Luptak I, Hou X, Wang L, Higuchi A, Weisbrod RM, Ouchi N, Tu VH, Calamaras TD, Miller EJ, Verbeuren TJ, Walsh K, Cohen RA, Colucci WS. The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. Circulation 2012; 125: 1757-1764 S1–S6
  • 14 Di Pascoli M, Diví M, Rodríguez-Vilarrupla A, Rosado E, Gracia-Sancho J, Vilaseca M, Bosch J, García-Pagán JC. Resveratrol improves intrahepatic endothelial dysfunction and reduces hepatic fibrosis and portal pressure in cirrhotic rats. J Hepatol 2013; 58: 904-910
  • 15 Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021; 26: 229
  • 16 Li T, Tan Y, Ouyang S, He J, Liu L. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene 2022; 808: 145968
  • 17 Zhang X, Jiang L, Chen H, Wei S, Yao K, Sun X, Yang G, Jiang L, Zhang C, Wang N, Wang Y, Liu X. Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress-related PERK pathway in MIN6 cells. Toxicology 2022; 465: 153048
  • 18 Stockwell BR, Jiang X. The chemistry and biology of ferroptosis. Cell Chem Biol 2020; 27: 365-375
  • 19 Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillón M, Andres-Lacueva C, Somogyvári M, Sőti C, Sanfeliu C, Pallàs M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimerʼs disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 2021; 67: 101271
  • 20 Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med 2020; 152: 175-185
  • 21 Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 2019; 133: 144-152
  • 22 Silva MM, Rocha CRR, Kinker GS, Pelegrini AL, Menck CFM. The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells. Sci Rep 2019; 9: 17639
  • 23 Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016; 63: 173-184
  • 24 Daverey A, Agrawal SK. Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress. Brain Res 2018; 1692: 45-55
  • 25 Chatterjee A, Ronghe A, Padhye SB, Spade DA, Bhat NK, Bhat HK. Antioxidant activities of novel resveratrol analogs in breast cancer. J Biochem Mol Toxicol 2018; 32: e21925
  • 26 Csiszar A, Sosnowska D, Wang M, Lakatta EG, Sonntag WE, Ungvari Z. Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: reversal by resveratrol treatment. J Gerontol A Biol Sci Med Sci 2012; 67: 811-820
  • 27 Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X, Huang Z, Lin M, Wu H, Xu D. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered 2021; 12: 10924-10934
  • 28 Dai C, Chen X, Li J, Comish P, Kang R, Tang D. Transcription factors in ferroptotic cell death. Cancer Gene Ther 2020; 27: 645-656