RSS-Feed abonnieren
DOI: 10.1055/a-1916-4510
Asymmetric Synthesis of ent-Anorisol A and Its Stereoisomers and Confirmation of the Absolute Configuration of Anorisol A Isolated from Anogeissus rivularis
This project is funded by the National Research Council of Thailand (NRCT) and Mahidol University (N42A650346), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Ministry of Higher Education, Science, Research and Innovation, Thailand, and the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative. A student scholarship to R.C. from the Science Achievement Scholarship of Thailand (SAST) is gratefully acknowledged.
Abstract
Asymmetric synthesis of (2S,3S,4R,5S)-2-(2,4-dihydroxyphenyl)-5-(4-methoxyphenyl)-3,4-dimethyltetrahydrofuran, named as ent-anorisol A, was accomplished. The uncommon relative 2,3-anti-3,4-syn-4,5-syn stereochemistry across the tetrahydrofuran ring of ent-anorisol A was constructed with high yield and good stereoselectivity via an acid-catalyzed direct cyclization of unprotected chiral 1,4-diarylbutane-1,4-diol with non-symmetrical aromatic rings. Except for the sign of the specific rotation value, the spectroscopic data of the synthetic ent-anorisol A are in good agreement with those reported for natural anorisol A isolated from Anogeissus rivularis. In addition, the (2R,3S,4R,5R) and (2S,3S,4R,5R) isomers of anorisol A were also synthesized. Comparison of the specific rotation value and the experimental electronic circular dichroism data of natural anorisol A with those of the synthesized ent-anorisol A, (2R,3S,4R,5R), and (2S,3S,4R,5R) derivatives confirms the 2R,3R,4S,5R configurations assigned for natural anorisol A.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1916-4510.
- Supporting Information
Publikationsverlauf
Eingereicht: 02. Juni 2022
Angenommen nach Revision: 02. August 2022
Accepted Manuscript online:
02. August 2022
Artikel online veröffentlicht:
01. September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Pan J.-Y, Chen S.-L, Yang M.-H, Wu J, Sinkkonen J, Zou K. Nat. Prod. Rep. 2009; 26: 1251
- 1b Teponno RB, Kusari S, Spiteller M. Nat. Prod. Rep. 2016; 33: 1044
- 1c Soorukram D, Pohmakotr M, Kuhakarn C, Reutrakul V. Synthesis 2018; 50: 4746
- 2 Sukbangnop W, Hosen A, Hongthong S, Kuhakarn C, Tuchinda P, Chaturonrutsamee S, Thanasansurapong S, Akkarawongsapat R, Limthongkul J, Napaswad C, Chairoungdua A, Suksen K, Nuntasaen N, Reutrakul V. Fitoterapia 2021; 151: 104885
- 3a Narukawa Y, Komatsu C, Yamauchi R, Shibayama S, Hachisuka M, Kiuchi F. J. Nat. Med. 2016; 70: 460
- 3b Li N, Tuo Z.-D, Qi S.-Z, Xing S.-S, Lee H.-S, Chen J.-G, Cui L. Fitoterapia 2015; 101: 46
- 3c Yu H.-Y, Chen Z.-Y, Sun B, Liu J, Meng F.-Y, Liu Y, Tian T, Jin A, Ruan H.-L. J. Nat. Prod. 2014; 77: 1311
- 3d Kim KH, Kim HK, Choi SU, Moon E, Kim SY, Lee KR. J. Nat. Prod. 2011; 74: 2187
- 3e Liu J.-S, Huang M.-F, Gao Y.-L, Findlay JA. Can. J. Chem. 1981; 59: 1680
- 3f Achenbach H, Groß J, Dominguez XA, Cano G, Star JV, Brussolo LD. C, Muñoz G, Salgado F, López L. Phytochemistry 1987; 26: 1159
- 3g Shang S.-Z, Han Y.-S, Shi Y.-M, Du X, Liang C.-Q, Wainberg MA, Gao Z.-H, Xiao W.-L, Sun H.-D. Nat. Prod. Bioprospect. 2013; 3: 56
- 3h Kaoud TS, Park H, Mitra S, Yan C, Tseng C.-C, Shi Y, Jose J, Taliaferro JM, Lee K, Ren P, Hong J, Dalby KN. ACS Chem. Biol. 2012; 7: 1873
- 4a Chaimanee S, Pohmakotr M, Kuhakarn C, Reutrakul V, Soorukram D. Org. Biomol. Chem. 2017; 15: 3985
- 4b Racochote S, Pohmakotr M, Kuhakarn C, Leowanawat P, Reutrakul V, Soorukram D. Eur. J. Org. Chem. 2019; 2212
- 4c Chatpreecha R, Kuhakarn C, Leowanawat P, Reutrakul V, Soorukram D. ARKIVOC 2020; (vi): 299
- 5 Yodwaree S, Soorukram D, Kuhakarn C, Tuchinda P, Reutrakul V, Pohmakotr M. Org. Biomol. Chem. 2014; 12: 6885 ; and references cited therein
- 6a Roush WR, Bannister TD, Wendt MD, VanNieuwenhze MS, Gustin DJ, Dilley GJ, Lane GC, Scheidt KA, Smith WJ. J. Org. Chem. 2002; 67: 4284
- 6b Bifulco G, Dambruoso P, Gomez-Paloma L, Riccio R. Chem. Rev. 2007; 107: 3744
- 6c Davidson SJ, Rye CE, Barker D. Phytochem. Lett. 2015; 14: 138
- 7 According to HSQC correlations of 8, four diastereomers were obtained; however, one minor isomer is overlapped with other peaks at 5.85–5.71 ppm (see the Supporting Information).
- 8a Lepore SD, He Y. J. Org. Chem. 2003; 68: 8261
- 8b Muramoto N, Yoshino K, Misaki T, Sugimura T. Synthesis 2013; 45: 931
- 8c Weissman SA, Rossen K, Reider PJ. Org. Lett. 2001; 3: 2513
- 8d Hillier MC, Desrosiers J.-N, Marcoux J.-F, Grabowski EJ. J. Org. Lett. 2004; 6: 573
- 9a Harada K, Horiuchi H, Tanabe K, Carter RG, Esumi T, Kubo M, Hioki H, Fukuyama Y. Tetrahedron Lett. 2011; 52: 3005
- 9b Harada K, Kubo M, Horiuchi H, Ishii A, Esumi T, Hioki H, Fukuyama Y. J. Org. Chem. 2015; 80: 7076
- 9c Hanessian S, Reddy GJ. Synlett 2007; 475
- 9d Hanessian S, Reddy GJ, Chahal N. Org. Lett. 2006; 8: 5477
- 9e Vakiti JR, Hanessian S. Org. Lett. 2020; 22: 3345
- 9f Rye CE, Barker D. J. Org. Chem. 2011; 76: 6636
- 9g Davidson SJ, Barker D. Angew. Chem. Int. Ed. 2017; 56: 9483
- 9h Duhamel N, Rye CE, Barker D. Asian J. Org. Chem. 2013; 2: 491
- 9i Rye CE, Barker D. Synlett 2009; 3315
- 9j Peng Y, Luo Z.-B, Zhang J.-J, Luo L, Wang Y.-W. Org. Biomol. Chem. 2013; 11: 7574
- 9k Zhang H.-Q, Yan C.-H, Xiao J, Wang Y.-W, Peng Y. Org. Biomol. Chem. 2022; 20: 1623
- 9l See also ref. 1c.
- 10 Davidson SJ, Barker D. Tetrahedron Lett. 2015; 56: 4549
- 11a Fonseca SF, Barata LE. S, Rúveda EA, Baker PM. Can. J. Chem. 1979; 57: 441
- 11b Han SJ, Kang YK. J. Mol. Struct.: THEOCHEM 1996; 369: 157
- 11c Wu A, Cremer D. Int. J. Mol. Sci. 2003; 4: 158
- 11d Rayón VM. J. Chem. Phys. 2005; 122: 204303
- 11e Tormena CF. Prog. Nucl. Magn. Reson. Spectrosc. 2016; 96: 73
- 11f Park SM, Lee YR, Kang DW, Kim HL, Kwon CH. Phys. Chem. Chem. Phys. 2017; 19: 30362
For selected examples of naturally occurring 2,5-diaryl-3,4-dimethyltetrahydrofurans with 2,3-anti-3,4-syn-4,5-syn relative stereochemistry, see:
For an NMR method for assigning relative stereochemistry, see: