Synthesis 2022; 54(23): 5253-5260
DOI: 10.1055/a-1894-8826
paper

Ir-Catalyzed α-Alkylation of Ketones with Alcohols: One-Step Access to Donepezil

Sen Wang
,
Rui Miao
,
Yanping Xia
,
Yifei Wei
,
,
Lu Ouyang
The National Natural Science Foundation of China (22161003), and Gannan Medical University (QD201810, TD2021YX05) are acknowledged for financial support.


Abstract

We demonstrate an iridium-catalyzed alkylation of ketones with alcohols, which enables one-step access to donepezil, cyclic ketones, and linear ketones in high yields. A scale-up experiment shows the excellent practicability of this protocol. Comparative experiments show that a small amount of water is beneficial to the improvement of product yield.

Supporting Information



Publication History

Received: 20 April 2022

Accepted after revision: 08 July 2022

Accepted Manuscript online:
08 July 2022

Article published online:
15 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Smets J, Denutte HR. G, Pintens A, Stanton DT, VanAken K, Laureyn IH. H, Denolf B, Vrielynck FA. C. US 20100137178 A1, 2010
    • 1b Reddy TN, Beatriz A, Rao VJ, de Lima DP. Chem. Asian J. 2019; 14: 344
    • 1c Zhang S, Neumann H, Beller M. Chem. Soc. Rev. 2020; 49: 3187
    • 1d Bartolo ND, Read JA, Valentín EM, Woerpel KA. Chem. Rev. 2020; 120: 1513
    • 2a Corma A, Navas J, Sabater MJ. Chem. Rev. 2018; 118: 1410
    • 2b Thiyagarajan S, Sankar RV, Gunanathan C. Org. Lett. 2020; 22: 7879
    • 2c Genç S, Günnaz S, Çetinkaya B, Gülcemal S, Gülcemal D. J. Org. Chem. 2018; 83: 2875
    • 2d Mujahed S, Valentini F, Cohen S, Vaccaro L, Gelman D. ChemSusChem 2019; 12: 4693
    • 2e Wang R.-Z, Ma J, Li F. J. Org. Chem. 2015; 80: 10769
    • 2f Wang D.-W, Zhao K.-Y, Yu X, Miao H.-Y, Ding Y.-Q. RSC Adv. 2014; 4: 42924
  • 3 Wu K, He W, Sun C, Yu Z. Tetrahedron Lett. 2016; 57: 4017
    • 4a Cao X.-N, Wan X.-M, Yang F.-L, Li K, Hao X.-Q, Shao T, Zhu X, Song M.-P. J. Org. Chem. 2018; 83: 3657
    • 4b Vijayapritha S, Murugan K, Viswanathamurthi P, Vijayan P, Kalaiarasi C. Inorg. Chim. Acta 2020; 512: 119887
    • 4c Balamurugan G, Balaji S, Ramesh R, Bhuvanesh NS. Appl. Organomet. Chem. 2019; 33: e4696
    • 4d Piehl P, Amuso R, Alberico E, Junge H, Gabriele B, Neumann H, Beller M. Chem. Eur. J. 2020; 26: 6050
    • 4e Zhang C, Zhao J.-P, Hu B, Shi J, Chen D. Organometallics 2019; 38: 654
    • 4f Liu S.-Y, Xu L.-Y, Liu C.-Y, Ren Z.-G, Young DJ, Lang J.-P. Tetrahedron 2017; 73: 2374
    • 4g Kuwahara T, Fukuyama T, Ryu I. Org. Lett. 2012; 14: 4703
    • 4h Maji A, Singh A, Singh N, Ghosh K. ChemCatChem 2020; 12: 3108
    • 5a Wang R, Huang L, Du Z, Feng H. J. Organomet. Chem. 2017; 846: 40
    • 5b Yu X, Wang Q, Wu Q, Wang D. Russ. J. Gen. Chem. 2016; 86: 178
    • 5c Piehl P, Peña-López M, Frey A, Neumann H, Beller M. Chem. Commun. 2017; 53: 3265
    • 6a Kaur M, Reshi N, Patra K, Bhattacherya A, Kunnikuruvan S, Bera JK. Chem. Eur. J. 2021; 27: 10737
    • 6b Meng C, Xu J, Tang Y, Ai Y, Li F. New J. Chem. 2019; 43: 14057
    • 6c Wang D, Zhao K, Xu C, Miao H, Ding Y. ACS Catal. 2014; 4: 3910
    • 6d Li F, Ma J, Wang N. J. Org. Chem. 2014; 79: 10447
    • 6e Liu P, Liang R, Lu L, Yu Z, Li F. J. Org. Chem. 2017; 82: 1943
    • 6f Ng TW, Liao G, Lau KK, Pan HJ, Zhao Y. Angew. Chem. Int. Ed. 2020; 59: 11384
    • 6g Rakers L, Schäfers F, Glorius F. Chem. Eur. J. 2018; 24: 15529
  • 7 Buil ML, Esteruelas MA, Herrero J, Izquierdo S, Pastor IM, Yus M. ACS Catal. 2013; 3: 2072
    • 8a Bennedsen NR, Mortensen RL, Kramer S, Kegnæs S. J. Catal. 2019; 371: 153
    • 8b Kwon MS, Kim N, Seo SH, Park IS, Cheedrala RK, Park J. Angew. Chem. Int. Ed. 2005; 44: 6913
    • 8c Mamidala R, Samser S, Sharma N, Lourderaj U, Venkatasubbaiah K. Organometallics 2017; 36: 3343
    • 9a Nallagangula M, Sujatha C, Bhat VT, Namitharan K. Chem. Commun. 2019; 55: 8490
    • 9b Seck C, Mbaye MD, Coufourier S, Lator A, Lohier JF, Poater A, Ward TR, Gaillard S, Renaud JL. ChemCatChem 2017; 9: 4410
    • 9c Ibrahim JJ, Reddy CB, Zhang S, Yang Y. Asian J. Org. Chem. 2019; 8: 1858
    • 10a Tan D.-W, Li H.-X, Zhu D.-L, Li H.-Y, Young DJ, Yao J.-L, Lang J.-P. Org. Lett. 2018; 20: 608
    • 10b Xu Z, Yu X, Sang X, Wang D. Green Chem. 2018; 20: 2571
  • 11 Alonso F, Riente P, Yus M. Eur. J. Org. Chem. 2008; 2008: 4908
    • 12a Chakraborty S, Daw P, Ben David Y, Milstein D. ACS Catal. 2018; 8: 10300
    • 12b Barman MK, Jana A, Maji B. Adv. Synth. Catal. 2018; 360: 3233
    • 12c Lan X.-B, Ye Z, Huang M, Liu J, Liu Y, Ke Z. Org. Lett. 2019; 21: 8065
    • 12d Lan XB, Ye Z, Liu J, Huang M, Shao Y, Cai X, Liu Y, Ke Z. ChemSusChem 2020; 13: 2557
    • 12e Gawali SS, Pandia BK, Pal S, Gunanathan C. ACS Omega 2019; 4: 10741
    • 12f Peña-López M, Piehl P, Elangovan S, Neumann H, Beller M. Angew. Chem. Int. Ed. 2016; 55: 14967
  • 13 Cui X, Zhang Y, Shi F, Deng Y. Chem. Eur. J. 2011; 17: 1021
  • 14 Liang Y.-F, Zhou X.-F, Tang S.-Y, Huang Y.-B, Feng Y.-S, Xu H.-J. RSC Adv. 2013; 3: 7739
  • 15 Singh A, Maji A, Joshi M, Choudhury AR, Ghosh K. Dalton Trans. 2021; 50: 8567
  • 16 Zhang G, Wu J, Zeng H, Zhang S, Yin Z, Zheng S. Org. Lett. 2017; 19: 1080
  • 17 Genҫ S, Gülcemal S, Günnaz S, Ҫetinkaya B, Gülcemal D. Org. Lett. 2021; 23: 5229
  • 18 Prasad SB. B, Mysore S, Ashok RajC. S, Rangappa KS, Mahadevaiah K, Kumar CS. A. Curr. Bioact. Compd. 2020; 16: 348
  • 19 Laroche B, Saito Y, Ishitani H, Kobayashi S. Org. Process Res. Dev. 2019; 23: 961
  • 20 Irrgang T, Kempe R. Chem. Rev. 2019; 119: 2524
  • 21 Schlepphorst C, Maji B, Glorius F. ACS Catal. 2016; 6: 4184
  • 22 Alanthadka A, Bera S, Banerjee D. J. Org. Chem. 2019; 84: 11676
  • 23 Das J, Singh K, Vellakkaran M, Banerjee D. Org. Lett. 2018; 20: 5587
  • 24 Kabadwal LM, Das J, Banerjee D. Chem. Commun. 2018; 54: 14069
    • 25a Luo NH, Liao JH, Ouyang L, Wen HL, Liu JT, Tang WP, Luo RS. Organometallics 2019; 38: 3025
    • 25b Luo NH, Liao JH, Ouyang L, Wen HL, Zhong YH, Liu JT, Tang WP, Luo RS. Organometallics 2020; 39: 165
    • 25c Luo N.-H, Zhong Y.-H, Wen H.-L, Luo R. ACS Omega 2020; 5: 27723
    • 25d Ouyang L, Xia Y, Liao J, Luo R. Eur. J. Org. Chem. 2020; 2020: 6387
  • 26 Huang S, Wu S.-P, Zhou Q, Cui H.-Z, Hong X, Lin Y.-J, Hou X.-F. J. Organomet. Chem. 2018; 868: 14
  • 27 Cao XN, Wan XM, Yang FL, Li K, Hao XQ, Shao T, Zhu X, Song MP. J. Org. Chem. 2018; 83: 3657
  • 28 Chen Y, Shu C, Luo F, Xiao X, Zhu G. Chem. Commun. 2018; 54: 5373
  • 29 Grützmacher HF, Kuck D. Int. J. Endocrinol. 2017; 413: 106
  • 30 Basavaiah D, Reddy RM. Tetrahedron Lett. 2001; 42: 3025
  • 31 Tian F, Yao D, Liu Y, Xie F, Zhang W. Adv. Synth. Catal. 2010; 352: 1841
  • 32 Zheng YL, Newman SG. Angew. Chem. Int. Ed. 2019; 58: 18159
  • 33 Coufourier S, Ndiaye D, Gaillard QG, Bettoni L, Joly N, Mbaye MD, Poater A, Gaillard S, Renaud JL. Tetrahedron 2021; 90: 132187
  • 34 Walker JA. Jr, Vickerman KL, Humke JN, Stanley LM. J. Am. Chem. Soc. 2017; 139: 10228
  • 35 Fogassy G, Hegedűs L, Tungler A, Lévai A, Máthé T. J. Mol. Catal. A: Chem. 2000; 154: 237
  • 36 Rocaboy R, Anastasiou I, Baudoin O. Angew. Chem. Int. Ed. 2019; 58: 14625
  • 37 Bennedsen NR, Mortensen RL, Kramer S, Kegnæs S. J. Catal. 2019; 371: 153
  • 38 Liu H, Xue F, Wang M, Tang X, Wu J. Synlett 2021; 32: 406
  • 39 Qin H, Yang J, Yan K, Xue Y, Zhang M, Sun X, Wen J, Wang H. Adv. Synth. Catal. 2021; 363: 2104
  • 40 De R, Savarimuthu SA, Chandra S, Bera MK. New J. Chem. 2021; 45: 17871
  • 41 Martins BS, Kaiser D, Bauer A, Tiefenbrunner I, Maulide N. Org. Lett. 2021; 23: 2094
  • 42 Das J, Vellakkaran M, Banerjee D. J. Org. Chem. 2018; 84: 769
  • 43 Hong Y.-T, Barchuk A, Krische MJ. Angew. Chem. Int. Ed. 2006; 45: 6885