Synlett 2022; 33(19): 1907-1912
DOI: 10.1055/a-1893-7550
letter
Thieme Chemistry Journals Awardees 2022

Synthetic and Mechanistic Investigation of an Unexpected ­Intramolecular 1-5 Nitrogen to Carbon Tosyl Migration

Gciniwe S. Mathenjwa
a   School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
,
Matthew P. Akerman
a   School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
,
b   Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
,
c   Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
› Author Affiliations
The authors acknowledge support from the National Research Foundation of South Africa (NRF, Grant No. 116305) and Future Leaders – African Independent Research (FLAIR), a partnership between the African Academy of Sciences and the Royal Society that is funded by the UK Government as part of the Global Challenges Research Fund (GCRF). GSM gratefully acknowledges financial support from the NRF.


Abstract

Controlled sulfonyl migration is considered an important transformation for total synthesis and scaffold elaboration. Accordingly, efforts to understand the underlying properties of these often serendipitously identified reactions have important implications. Following the attempted synthesis of a tetrahydroindazolone analogue, we report here an unexpected 1,5-nitrogen to carbon tosyl migration, resulting in the isolation of an unusual sulfonated dimedone. Synthetic and mechanistic investigations provide early insight into the scope of this reaction, with two potential mechanisms proposed.

Supporting Information



Publication History

Received: 14 April 2022

Accepted after revision: 07 July 2022

Accepted Manuscript online:
07 July 2022

Article published online:
05 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Nunn AJ, Rowell FJ. J. Chem. Soc., Perkin Trans. 1 1975; 4: 2435
  • 2 Strakova I, Turks M, Strakovs A. Tetrahedron Lett. 2009; 50: 3046
  • 3 Ju HQ, Xiang YF, Xin BJ, Pei Y, Lu JX, Wang QL, Xia M, Qian CW, Ren Z, Wang SY, Wang YF, Xing GW. Bioorg. Med. Chem. Lett. 2011; 21: 1675
  • 4 Lee JC, Hong KH, Becker A, Tash JS, Schönbrunn E, Georg GI. Eur. J. Med. Chem. 2021; 214: 113232
  • 5 Huang KH, Veal JM, Fadden RP, Rice JW, Eaves J, Strachan JP, Barabasz AF, Foley BE, Barta TE, Ma W, Silinski MA, Hu M, Partridge JM, Scott A, DuBois LG, Freed T, Steed PM, Ommen AJ, Smith ED, Hughes PF, Woodward AR, Hanson GJ, McCall WS, Markworth CJ, Hinkley L, Jenks M, Geng L, Lewis M, Otto J, Pronk B, Verleysen K, Hall SE. J. Med. Chem. 2009; 52: 4288
  • 6 Hughes PF, Barrott JJ, Carlson DA, Loiselle DR, Speer BL, Bodoor K, Rund LA, Haystead TA. J. Bioorg. Med. Chem. 2012; 20: 3298
  • 7 Taldone T, Zatorska D, Patel PD, Zong H, Rodina A, Ahn JH, Moulick K, Guzman ML, Chiosis G. Bioorg. Med. Chem. 2011; 19: 2603
  • 8 Barrott JJ, Hughes PF, Osada T, Yang X, Hartman ZC, Loiselle DR, Spector NL, Neckers L, Rajaram N, Hu F, Ramanujam N, Vaidyanathan G, Zalutsky MR, Lyerly HK, Haystead TA. Chem. Biol. 2013; 20: 1187
  • 9 Shrestha L, Patel HJ, Chiosis G. Cell Chem. Biol. 2016; 23: 158
  • 10 Crowe LB, Hughes PF, Alcorta DA, Osada T, Smith AP, Totzke J, Loiselle DR, Lutz ID, Gargesha M, Roy D, Roques J, Darr D, Lyerly HK, Spector NL, Haystead TA. J. ACS Chem. Biol. 2017; 12: 1047
  • 11 Kim J, Song H, Park SB. Eur. J. Org. Chem. 2010; 3815
  • 12 Kim J, Song H, Park SB. Chem. Asian J. 2011; 6: 2062
  • 13 Möhrle H, Arz P. Arch. Pharm. (Weinheim) 1986; 319: 303
  • 14 Jia J, Xu QC, Li RC, Tang X, He YF, Zhang MY, Zhang Y, Xing GW. Org. Biomol. Chem. 2012; 10: 6279
  • 15 Bycroft BW, Chan WC, Chhabra SR, Hone ND. J. Chem. Soc., Chem. Commun. 1993; 778
  • 16 Claramunt RM, López C, Pérez-Medina C, Pinilla E, Torres MR, Elguero J. Tetrahedron 2006; 62: 11704
  • 17 Teuber H.-J, Braun R. Chem. Ber. 1967; 100: 1353
  • 18 Duan S, Venkatraman S, Hong X, Huang K, Ulysse L, Mobele BI, Smith A, Lawless L, Locke A, Garigipati R. Org. Process Res. Dev. 2012; 16: 1787
  • 19 Veale CG. L, Mateos-Jiménez M, Vaaltyn MC, Müller R, Makhubu MP, Alhassan M, de la Torre BG, Albericio F, Mackay CL, Edkins AL, Clarke DJ. Chem. Commun. 2021; 57: 10919
  • 20 Namba K, Shoji I, Nishizawa M, Tanino K. Org. Lett. 2009; 11: 4970
  • 21 Ghavre M. Asian J. Org. Chem. 2020; 9: 1901
  • 22 Hiegel GA, Burk P. J. Org. Chem. 1973; 38: 3637
  • 23 General Procedure for the Preparation of Compounds 7, 8, 13–18 Acid anhydride (1 equiv) was added to a suspension of 6 (500 mg, 1.59 mmol, 1 equiv) in Et3N (13 equiv) and THF (9 mL). The reaction mixture was heated to 55 °C, forming an orange solution, which was stirred for 2 h. After cooling to room temperature, the mixture was quenched with sat. NH4Cl (20 mL) and extracted with EtOAc (3 × 20 mL). The combined organic fractions were washed with sat. brine (20 mL), dried over anhydrous MgSO4, concentrated in vacuo to yield an orange-brown oil, and purified with silica gel chromatography to yield compounds 7, 8, 1318. N-Acetyl-N′-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)-4-methylbenzenesulfonohydrazide (8) White solid (1.32 g, 60% yield). 1H NMR (DMSO, 400 MHz): δ = 9.84 (1 H, s, NH-8), 7.87 (2 H, d, J = 8.5 Hz, H-14, H-19), 7.46 (2 H, d, J = 8.5 Hz, H-15, H-18), 4.96 (1 H, s, H-2), 2.42 (3 H, s, H-17), 2.30 (2 H, s, H-6), 2.10 (2 H, s, H-4), 2.05 (3 H, s, H-11), 1.04 (3 H, s, H-7a), 1.02 (3 H, s, H-7b). 13C NMR (DMSO, 100 MHz): δ = 195.6 (CO, C-3), 170.5 (CO, C-10), 162.0 (qc, C-1), 145.3 (qc, C-16), 135.0 (qc, C-13), 129.5 (CH, C-15, C-18), 128.7 (CH, C-14, C-19), 97.4 (CH, C-2), 50.3 (CH2, C-4), 38.7* (CH2, C-6), 32.7 (qc, C-5), 27.6 (CH3, C-7), 27.6 (CH3, C-7), 21.9 (CH3, C-11), 21.1 (CH3, C-17) ppm. HRESMS: m/z calcd for C17H23N2O4S [M + H]+ 351.1379; found: 351.1377. Spectral data for compounds 7, 1318 are available in the Supporting Information.
  • 24 General Procedure for the Preparation of Compounds 12, 19–21 NaOH (5.3 equiv) was added to a suspension of 8 (100 mg, 0.285 mmol, 1 equiv) in THF (6 mL) and stirred at room temperature for 16 h. Thereafter, the mixture was quenched with sat. NH4Cl (15 mL) and extracted with EtOAc (3 × 15 mL). The combined organic fractions were washed with sat. brine (15 mL), dried over anhydrous MgSO4, concentrated in vacuo, and purified with silica gel chromatography to yield compounds 12, 1921. N′-(5,5-Dimethyl-3-oxo-2-tosylcyclohex-1-en-1-yl)acetohydrazide (12) Pale yellow solid (76 mg, 76% yield). 1H NMR (DMSO, 500 MHz): δ = 10.45 (1 H, s, NH-8), 10.42 (1 H, s, NH-9), 7.76 (2 H, d, J = 8.2 Hz, H-14, H-19), 7.34 (2 H, d, J = 8.2 Hz, H-15, H-18), 2.53 (2 H, s, H-6), 2.37 (3 H, s, H-17), 2.05 (2 H, s, H-4), 1.96 (3 H, s, H-11), 0.90 (6 H, s, H-7). 13C NMR (DMSO, 125 MHz): δ = 189.2 (CO, C-3), 169.0 (CO, C-10), 167.7 (qc, C-1), 142.8 (qc, C-16), 140.6 (qc, C-13), 128.8 (CH, C-15, C-18), 126.8 (CH, C-14, C-19), 105.1 (qC, C-2), 50.0 (CH2, C-4), 38.3 (CH2, C-6), 30.5 (qC, C-5), 27.3 (CH3, C-7), 20.9 (CH3, C-17), 20.4 (CH3, C-11) ppm. HRESMS: m/z calcd for C17H23N2O4S [M+H]+: 351.1379; found: 351.1378. Spectral data for compounds 1921 are available in the Supporting Information.
  • 25 Henderson AR. P, Kosowan JR, Wood TE. Can. J. Chem. 2017; 95: 483
  • 26 Ji F, Peng H, Zhang X, Lu W, Liu S, Jiang H, Liu B, Yin B. J. Org. Chem. 2015; 80: 2092
  • 27 Wang SK, You X, Zhao DY, Mou NJ, Luo QL. Chem. Eur. J. 2017; 23: 11757
  • 28 Gupta V, Carroll KS. Chem. Sci. 2016; 7: 400
  • 29 Flynn AJ, Ford A, Maguire AR. Org. Biomol. Chem. 2020; 18: 2549
  • 30 Flynn AJ, Ford A, Khandavilli UB. R, Lawrence SE, Maguire AR. Eur. J. Org. Chem. 2019; 5368
  • 31 Ansari AJ, Sawant DM, Wani AA, Bharatam PV, Maurya AK, Agnihotri VK, Verma S. Chem. Commun. 2019; 55: 14825