Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(17): 1763-1769
DOI: 10.1055/a-1893-7329
DOI: 10.1055/a-1893-7329
letter
A Chiral N-Tetrafluoroiodobenzyl-N-sulfonyl Aminomethylpyrrolidine Catalyst for the Enantioselective Michael/Hemiaminal Formation Cascade Reaction of α,β-Unsaturated Iminoindoles with Aldehydes
This work was supported by a Grant-in-Aid for Scientific Research (G19K05469) to K.M. from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Abstract
A chiral N-2,3,4,5-tetrafluoro-6-iodobenzyl-N-sulfonyl aminomethylpyrrolidine tetrafluoroacetic acid salt was designed as an iodinated enamine organocatalyst for the enantioselective Michael/hemiaminal formation cascade reaction of α,β-unsaturated iminoindoles with aldehydes. The use of this iodinated enamine catalyst furnished anti-α-carbolinol derivatives in high yields and high stereoselectivities.
Key words
cascade reaction - catalytic asymmetric reaction - α-carbolinol - hemiaminal formation - Michael reaction - iodo-pyrrolidine catalystSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1893-7329.
- Supporting Information
Publication History
Received: 11 June 2022
Accepted after revision: 07 July 2022
Accepted Manuscript online:
07 July 2022
Article published online:
04 August 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Bruckmann A, Pena MA, Bolm PC. Synlett 2008; 900
- 1b Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM. Angew. Chem. Int. Ed. 2013; 52: 7028
- 1c Jungbauer SH, Walter SM, Schindler S, Rout L, Kniep F, Huber SM. Chem. Commun. 2014; 50: 6281
- 1d He W, Ge Y.-C, Tan C.-H. Org. Lett. 2014; 16: 3244
- 1e Takeda Y, Hisakuni D, Lin C.-H, Minakata S. Org. Lett. 2015; 17: 318
- 1f Saito M, Tsuji N, Kobayashi Y, Takemoto Y. Org. Lett. 2015; 17: 3000
- 1g Jungbauer SH, Huber SM. J. Am. Chem. Soc. 2015; 137: 12110
- 1h Matsuzawa A, Takeuchi S, Sugita K. Chem. Asian J. 2016; 11: 2863
- 1i Saito M, Kobayashi Y, Tsuzuki S, Takemoto Y. Angew. Chem. Int. Ed. 2017; 56: 7653
- 1j Gliese J.-P, Jungbauer SH, Huber SM. Chem. Commun. 2017; 53: 12052
- 1k Chan Y.-C, Yeung Y.-Y. Angew. Chem. Int. Ed. 2018; 57: 3483
- 1l Heinen F, Engelage E, Dreger A, Weiss R, Huber SM. Angew. Chem. Int. Ed. 2018; 57: 3830
- 1m Kobayashi Y, Nakatsuji Y, Li S, Tsuzuki S, Takemoto Y. Angew. Chem. Int. Ed. 2018; 57: 3646
- 1n Haraguchi R, Hoshino S, Sakai M, Tanazawa S, Morita Y, Komatsu T, Fukuzawa S. Chem. Commun. 2018; 54: 10320
- 1o Matsuzaki K, Uno H, Tokunaga E, Shibata N. ACS Catal. 2018; 8: 6601
- 1p Dreger A, Wonner P, Engelage E, Walter SM, Stoll R, Huber SM. Chem. Commun. 2019; 55: 8262
- 1q Ge YC, Yang H, Heusler A, Chua Z, Wong MW, Tan CH. Chem. Asian J. 2019; 14: 2656
- 1r Kuwano S, Suzuki T, Yamanaka M, Tsutsumi R, Arai T. Angew. Chem. Int. Ed. 2019; 58: 10220
- 2 Zong L, Ban X, Kee CW, Tan C.-H. Angew. Chem. Int. Ed. 2014; 53: 11849
- 3a Kuwano S, Suzuki T, Hosaka Y, Arai T. Chem. Commun. 2018; 54: 3847
- 3b Kuwano S, Nishida Y, Suzuki T, Arai T. Adv. Synth. Catal. 2020; 362: 1674
- 4 Arai T, Suzuki T, Inoue T, Kuwano S. Synlett 2017; 28: 122
- 5 Sutar RL, Engelage E, Stoll R, Huber SM. Angew. Chem. Int. Ed. 2020; 59: 6806
- 6 Ostler F, Piekarski DG, Danelzik T, Taylor MS, Mancheño OG. Chem. Eur. J. 2021; 27: 2315
- 7a Liu Y, Qin W, Yan H. Synlett 2016; 27: 2756
- 7b Liu Y, Ao J, Paladhi S, Song CE, Yan H. J. Am. Chem. Soc. 2016; 138: 16486
- 7c Vaithiyanathan V, Kim MJ, Liu Y, Yan H, Song CE. Chem. Eur. J. 2017; 23: 1268
- 7d Kim MJ, Xue L, Liu Y, Paladhi S, Park SJ, Yan H, Song CE. Adv. Synth. Catal. 2017; 359: 811
- 7e Duan M, Liu Y, Ao J, Xue L, Luo S, Tan Y, Qin W, Song CE, Yan H. Org. Lett. 2017; 19: 2298
- 7f Tan Y, Luo S, Li D, Zhang N, Jia S, Liu Y, Qin W, Song CE, Yan H. J. Am. Chem. Soc. 2017; 139: 6431
- 7g Paladhi S, Liu Y, Kumar BS, Jung M.-J, Park SY, Yan H, Song CE. Org. Lett. 2017; 19: 3279
- 7h Liu Y, Liu S, Li D, Zhang N, Peng L, Ao J, Song CE, Lan Y, Yan H. J. Am. Chem. Soc. 2019; 141: 1150
- 8a Hirano A, Iwai Y, Masuma R, Tei K, Omura S. J. Antibiot. 1979; 32: 781
- 8b Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T. Tetrahedron Lett. 1993; 34: 2355
- 8c Nakao Y, Yeung BK. S, Yoshida WY, Scheuer PJ. J. Am. Chem. Soc. 1995; 117: 8271
- 8d Yeung BK. S, Nakao Y, Kinnel RB, Carney JR, Yoshida WY, Scheuer PJ, Kelly-Borges M. J. Org. Chem. 1996; 61: 7168
- 8e Verbitski SM, Mayne CL, Davis RA, Concepcion GP, Ireland CM. J. Org. Chem. 2002; 67: 7124
- 8f Jadulco R, Edrada RA, Ebel R, Berg A, Schaumann K, Wray V, Steube K, Proksch P. J. Nat. Prod. 2004; 67: 78
- 8g Nakao Y, Kuo J, Yoshida WY, Kelly M, Scheuer PJ. Org. Lett. 2003; 5: 1387
- 8h Dalsgaard PW, Blunt JW, Munro MH. G, Frisvad JC, Christophersen C. J. Nat. Prod. 2005; 68: 258
- 8i Overy DP, Phipps RK, Frydenvang K, Larsen TO. Biochem. Syst. Ecol. 2006; 34: 345
- 8j Du L, Feng T, Zhao B, Li D, Cai S, Zhu T, Wang F, Xiao X, Gu Q. J. Antibiot. 2010; 63: 165
- 8k Saundane AR, Verma VA, Vijaykumar K. Med. Chem. Res. 2013; 22: 3787
- 8l Yao J, Jiao R, Liu C, Zhang Y, Yu W, Lu Y, Tan R. Biomol. Ther. 2016; 24: 147
- 8m Yao J, Wei X, Lu Y. Biochem. Biophys. Res. Commun. 2016; 473: 867
- 9 Moriyama K, Oka Y. ACS Catal. 2022; 12: 7436
- 10 For details of the experimental procedures for the preparation of N-2,3,4,5-tetrafluoro-6-iodo-benzyl-N-sulfonyl aminomethylpyrrolidine trifluoroacetic acid (TFA) salts 1, see the Supporting Information.
- 11 Oka Y, Tsuzuki S, Moriyama K. Chem. Commun. 2021; 57: 11457
- 12 (2R,3R,4S)-3-Methyl-4-phenyl-1-tosyl-2,3,4,9-tetrahydro-1H-pyrido[2,3-b]indol-2-ol (4a); Typical ProcedureTo a solution of catalyst 1g (18.3 mg, 0.025 mmol) in t-BuOMe (1 mL) were added N-[3-(phenylmethylene)-3H-indole-2-yl]tosylamide (2a) (93.6 mg, 0.25 mmol) and propionaldehyde (3a) (179.3 μL, 2.5 mmol) at room temperature, and the mixture was stirred at room temperature for 48 h. Saturated aqueous NaHCO3 solution (5 mL) was added to the mixture and the product was extracted with AcOEt (3 × 15 mL). The organic phase was washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: hexane/Et2O = 3:1) to give the desired product 4a (103.9 mg, 96% yield, dr = 87:13, 96% ee).Yellow solid; mp 115.0–115.5 °C. 1H NMR (400 MHz, CDCl3): δ = 9.01 (s, 1 H), 7.58 (d, J = 8.4 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 1 H), 7.26 (d, J = 8.4 Hz, 2 H), 7.21–7.10 (m, 3 H), 7.09–7.01 (m, 1 H), 6.89–6.70 (m, 3 H), 6.48 (d, J = 8.0 Hz, 1 H), 5.63–5.52 (m, 1 H), 3.70 (d, J = 11.2 Hz, 1 H), 3.17 (br s, 1 H), 2.39 (s, 3 H), 1.21–1.09 (m, 1 H), 0.88 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 144.8, 142.5, 134.4, 133.7, 130.1 (2 C), 128.6 (3 C), 128.2 (2 C), 126.8 (2 C), 126.6, 125.6, 121.4, 119.6, 119.1, 110.7, 102.9, 83.9, 41.2, 40.2, 21.6, 14.8. IR (neat): 3418, 1597, 1462, 1454, 1363, 1349, 1158, 984 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C25H25N2O3S: 433.1580; found: 433.1577. HPLC: Daicel Chiralpak AS-H, hexane/i-PrOH = 75:25, flow rate = 0.6 mL/min, 210 nm, t R = 26.6 min (minor, S,S,R), 38.5 min (major, R,R,S).