Synlett 2022; 33(17): 1695-1706
DOI: 10.1055/a-1885-4934
account

A Decade of Research on Daptomycin

Scott D. Taylor
I am grateful to The Natural Sciences and Engineering Research Council of Canada (RGPIN 2012-155283 and RGPIN-2017-04233) and the Canadian Institutes for Health Research (398954-2011) for funding this research.


Abstract

Daptomycin is a calcium-dependent cyclic lipodepsipeptide antibiotic that is used in the clinic for treating serious infections caused by Gram-positive bacteria. In this account, I present a summary of the research that has been conducted in my group on daptomycin’s total chemical synthesis, its structure–activity relationships, and its mechanism of action, since we began our studies a decade ago.

1 Introduction

2 Solid-Phase Synthesis of Daptomycin by an On-Resin Cyclization

3 α-Azido Acids and Alternative Routes to Daptomycin by On-Resin Cyclization

4 Synthesis of Daptomycin by an Off-Resin Cyclization

5 SAR Studies on Daptomycin

6 Oligomerization of Daptomycin on Membranes

7 The Chiral Target of Daptomycin

8 SAR Studies on Phosphatidylglycerol

9 Conclusions



Publication History

Received: 07 June 2022

Accepted: 27 June 2022

Accepted Manuscript online:
27 June 2022

Article published online:
29 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva; https://www.who.int/publications-detail-redirect/9789241509763 (accessed July 25, 2022).
  • 2 Eliopoulos GM, Willey S, Reiszner E, Spitzer PG, Caputo G, Moellering RC. Jr. Antimicrob. Agents Chemother. 1986; 30: 532
  • 3 Verbist L. Antimicrob. Agents Chemother. 1987; 31: 340
  • 4 Hodinka RL, Jack-Wait K, Wannamaker N, Walden TP, Gilligan PH. Eur. J. Clin. Microbiol. 1987; 6: 100
  • 5 Vilhena C, Bettencourt A. Mini-Rev. Med. Chem. 2012; 12: 202
  • 6 Jung D, Rozek A, Okon M, Hancock RE. W. Chem. Biol. 2004; 11: 949
  • 7 Hachmann A.-B, Sevim E, Gaballa A, Popham DL, Antelmann H, Helmann JD. Antimicrob. Agents Chemother. 2011; 55: 4326
  • 8 Kreutzberger MA, Pokorny A, Almeida PF. Langmuir 2017; 33: 13669
  • 9 Mishra NN, Bayer AS. Antimicrob. Agents Chemother. 2013; 57: 1082
  • 10 Grünewald J, Sieber SA, Mahlert C, Linne U, Marahiel MA. J. Am. Chem. Soc. 2004; 126: 17025
  • 11 Kopp F, Grünewald J, Mahlert C, Marahiel MA. Biochemistry 2006; 45: 10474
  • 12 Alexander DC, Rock J, Gu J.-Q, Mascio C, Chu M, Brian P, Baltz RH. J. Antibiot. 2011; 64: 79
  • 13 Nguyen KT, He X, Alexander DC, Li C, Gu J.-Q, Mascio C, Van Praagh A, Mortin L, Chu M, Silverman JA, Brian P, Baltz RH. Antimicrob. Agents Chemother. 2010; 54: 1404
  • 14 Nguyen KT, Ritz D, Gu J.-Q, Alexander D, Chu M, Miao V, Brian P, Baltz RH. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 17462
  • 15 Alexander DC, Baltz RH, Brain P, Coeffet-le Gal M.-F, Doekel S, He X, Kulkarni V, Leitheiser CJ, Miao V, Nguyen KT, Park IB, Ritz D, Zhang Y. WO 2006110185 2006
  • 16 Lam HY, Zhang Y, Liu H, Xu J, Wong CT. T, Xu C, Li X. J. Am. Chem. Soc. 2013; 135: 6272
  • 17 Lohani CR, Taylor R, Palmer M, Taylor SD. Org. Lett. 2015; 17: 748
  • 18 Lohani CR, Rasera B, Scott B, Palmer M, Taylor SD. J. Org. Chem. 2016; 81: 2624
  • 19 Lohani CR, Soley J, Kralt B, Palmer M, Taylor SD. J. Org. Chem. 2016; 81: 11831
  • 20 Taylor SD, Lohani CR. Org. Lett. 2016; 18: 4412
  • 21 Chow HY, Chen D, Li X. Org. Biomol. Chem. 2020; 18: 4401
  • 22 Barnawi G, Noden M, Taylor R, Lohani C, Beriashvili D, Palmer M, Taylor SD. Biopolymers 2019; 111: e23094
  • 23 Moreira R, Wolfe J, Taylor SD. Org. Biomol. Chem. 2021; 19: 3144
  • 24 Herdeis C, Hubmann HP, Lotter H. Tetrahedron: Asymmetry 1994; 5: 351
  • 25 Jako I, Uiber P, Mann A, Wermuth CG, Boulanger T, Norberg B, Evrard G, Durant F. J. Org. Chem. 1991; 56: 5729
  • 26 Moreira R, Taylor SD. Amino Acids 2020; 52: 987
  • 27 Lohani CR, Taylor R, Palmer M, Taylor SD. Bioorg. Med. Chem. Lett. 2015; 25: 5490
  • 28 Moreira R, Barnawi G, Beriashvili D, Palmer M, Taylor SD. Bioorg. Med. Chem. 2019; 27: 240
  • 29 Barnawi G, Noden M, Goodyear J, Marlyn J, Schneider O, Beriashvili D, Schulz S, Moreira R, Palmer M, Taylor SD. ACS Infect. Dis. 2022; 8: 778
  • 30 Chow HY, Po KH. L, Jin K, Qiao G, Sun Z, Ma W, Ye X, Zhou N, Chen S, Li X. ACS Med. Chem. Lett. 2020; 11: 1442
  • 31 Silverman JA, Perlmutter NG, Shapiro HM. Antimicrob. Agents Chemother. 2003; 47: 2538
  • 32 Muraih JK, Harris J, Taylor SD, Palmer M. Biochim. Biophys. Acta 2012; 1818: 673
  • 33 t’ Hart P, Kleijn LH. J, de Bruin G, Oppedijk SF, Kemmink J, Martin NI. Org. Biomol. Chem. 2014; 12: 913
  • 34 Moreira R, Taylor SD. Angew. Chem. Int. Ed. 2022; 61: e202114858
  • 35 Kotsogianni I, Wood TM, Alexander FM, Cochrane SA, Martin NI. ACS Infect. Dis. 2021; 7: 2612
  • 36 Moreira R, Taylor SD. ACS Inf. Dis. 2022, https://doi.org/10.1021/acsinfecdis.2c00262
  • 37 Taylor SD, Palmer M. Bioorg. Med. Chem. 2016; 24: 6253
  • 38 Gray DA, Wenzel M. Antibiotics (Basel, Switz.) 2020; 9: 17
  • 39 Pokorny A, Almeida PF. J. Membr. Biol. 2021; 254: 97
  • 40 Kang K.-M, Mishra NN, Park KT, Lee G.-Y, Park YH, Bayer AS, Yang S.-J. J. Microbiol. 2017; 55: 153
  • 41 Ji S, Jiang S, Wei X, Sun L, Wang H, Zhao F, Chen Y, Yu Y. J. Infect. Dis. 2020; 221: S243
  • 42 Zeng W, Feng L, Qian C, Chen T, Wang S, Zhang Y, Zheng X, Wang L, Liu S, Zhou T, Sun Y. Front. Microbiol. 2022; 13: 815600