Horm Metab Res 2022; 54(08): 532-539
DOI: 10.1055/a-1873-2150
Review

Adrenal Gland Function and Dysfunction During COVID-19

Waldemar Kanczkowski
1   Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
,
Waqar Haider Gaba
2   Internal Medicine, Shaikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
,
Nils Krone
3   Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom of Great Britain and Northern Ireland
,
Zsuzsanna Varga
4   Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
,
5   Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
,
Constanze Hantel
1   Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
5   Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
,
Cynthia Andoniadou
6   Craniofacial Development and Stem Cell Biology, King’s College London, London, United Kingdom of Great Britain and Northern Ireland
,
Stefan R. Bornstein
1   Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
7   School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom of Great Britain and Northern Ireland
› Author Affiliations

Abstract

The coronavirus disease 2019 (COVID-19) pandemic is currently one of the major health concerns worldwide accounting for many deaths and posing a great social and economic burden. Early activation of adrenal hormone secretion is pivotal to surviving systemic microbial infections. In addition, clinical studies demonstrated that glucocorticoids might also be beneficial in reducing disease progression and life deterioration in certain patients with COVID-19. Recent studies demonstrated that SARS-CoV-2 might target the adrenal glands, raising the possibility that at least some COVID-19 complications may be associated with adrenal dysfunction. Whether SARS-CoV-2 infection might cause adrenal dysfunction remains unknown. Histopathological examinations provided evidence that SARS-CoV-2 infection might indeed cause certain structural damage to the adrenal glands, especially concerning its vascular system. However, since no widespread cellular damage to cortical cells was observed, it is less likely that those changes could lead to an immediate adrenal crisis. This assumption is supported by the limited number of studies reporting rather adequate cortisol levels in patients with acute COVID-19. Those studies, however, could not exclude a potential late-onset or milder form of adrenal insufficiency. Although structural damage to adrenal glands is a rarely reported complication of COVID-19, some patients might develop a critical illness-related corticosteroid insufficiency (CIRCI), or iatrogenic adrenal insufficiency resulting from prolonged treatment with synthetic glucocorticoids. In this mini-review article, we aimed at describing and discussing factors involved in the adrenal gland function and possible dysfunction during COVID-19.



Publication History

Received: 21 March 2022

Accepted after revision: 01 June 2022

Article published online:
09 August 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020; 20: 533-534
  • 2 Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 2020; 323: 1239-1242
  • 3 Marik PE, Iglesias J, Varon J. et al. A scoping review of the pathophysiology of COVID-19. Int J Immunopathol Pharmacol 2021; 35 20587384211048026
  • 4 Bornstein SR, Dalan R, Hopkins D. et al. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol 2020; 16: 297-298
  • 5 Williamson EJ, Walker AJ, Bhaskaran K. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020; 584: 430-436
  • 6 Takahashi T, Ellingson MK, Wong P. et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020; 588: 315-320
  • 7 Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol 2022; 23: 165-176
  • 8 Karki R, Sharma BR, Tuladhar S. et al. Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 2021; 184: 149-168 e117
  • 9 Ngaosuwan K, Johnston DG, Godsland IF. et al. Increased mortality risk in patients with primary and secondary adrenal insufficiency. J Clin Endocrinol Metab 2021; 106: e2759-e2768
  • 10 Bornstein SR, Allolio B, Arlt W. et al. Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2016; 101: 364-389
  • 11 Isidori AM, Pofi R, Hasenmajer V. et al. Use of glucocorticoids in patients with adrenal insufficiency and COVID-19 infection. Lancet Diabetes Endocrinol 2020; 8: 472-473
  • 12 Group RC, Horby P, Lim WS. et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021; 384: 693-704
  • 13 Walker JJ, Terry JR, Lightman SL. Origin of ultradian pulsatility in the hypothalamic-pituitary-adrenal axis. Proc Biol Sci 2010; 277: 1627-1633
  • 14 Kanczkowski W, Sue M, Bornstein SR. The adrenal gland microenvironment in health, disease and during regeneration. Hormones (Athens) 2017; 16: 251-265
  • 15 Gadek-Michalska A, Bugajski AJ, Bugajski J. Nitric oxide and prostaglandins in the clenbuterol-induced ACTH and corticosterone secretion. J Physiol Pharmacol 2008; 59: 163-175
  • 16 Annane D, Pastores SM, Arlt W. et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a multispecialty task force of the society of critical care medicine (SCCM) and the European society of intensive care medicine (ESICM). Intensive Care Med 2017; 43: 1781-1792
  • 17 Boonen E, Vervenne H, Meersseman P. et al. Reduced cortisol metabolism during critical illness. N Engl J Med 2013; 368: 1477-1488
  • 18 Nenke MA, Rankin W, Chapman MJ. et al. Depletion of high-affinity corticosteroid-binding globulin corresponds to illness severity in sepsis and septic shock; clinical implications. Clin Endocrinol (Oxf) 2015; 82: 801-807
  • 19 Annane D, Maxime V, Ibrahim F. et al. Diagnosis of adrenal insufficiency in severe sepsis and septic shock. Am J Respir Crit Care Med 2006; 174: 1319-1326
  • 20 Ranawaka N, Welikumbura NH. Addison’s disease as a primary manifestation of extrapulmonary tuberculosis; A case report. Indian J Tuberc 2021; 68: 405-407
  • 21 Adem PV, Montgomery CP, Husain AN. et al. Staphylococcus aureus sepsis and the Waterhouse-Friderichsen syndrome in children. N Engl J Med 2005; 353: 1245-1251
  • 22 Hamilton D, Harris MD, Foweraker J. et al. Waterhouse-Friderichsen syndrome as a result of non-meningococcal infection. J Clin Pathol 2004; 57: 208-209
  • 23 Kumar B, Gopalakrishnan M, Garg MK. et al. Endocrine dysfunction among patients with COVID-19: a single-center experience from a tertiary hospital in India. Indian J Endocrinol Metab 2021; 25: 14-19
  • 24 Boonen E, Bornstein SR, Van den Berghe G. New insights into the controversy of adrenal function during critical illness. Lancet Diabetes Endocrinol 2015; 3: 805-815
  • 25 Wong DWL, Klinkhammer BM, Djudjaj S. et al. Multisystemic cellular tropism of SARS-CoV-2 in autopsies of COVID-19 patients. Cells 2021; 10: 1900
  • 26 Freire SM, Borba MGS, Baia-da-Silva DC. et al. Case report: adrenal pathology findings in severe COVID-19: an autopsy study. Am J Trop Med Hyg 2020; 103: 1604-1607
  • 27 Zinserling VA, Semenova NY, Markov AG. et al. Inflammatory cell infiltration of adrenals in COVID-19. Horm Metab Res 2020; 52: 639-641
  • 28 Kanczkowski W, Evert K, Stadtmuller M. et al. COVID-19 targets human adrenal glands. Lancet Diabetes Endocrinol 2022; 10: 13-16
  • 29 Lax SF, Skok K, Zechner P. et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med 2020; 173: 350-361
  • 30 Iuga AC, Marboe CC, Yilmaz M. et al. Adrenal vascular changes in COVID-19 autopsies. Arch Pathol Lab Med 2020; 144: 1159-1160
  • 31 Hanley B, Naresh KN, Roufosse C. et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe 2020; 1: e245-e253
  • 32 Paul T, Ledderose S, Bartsch H. et al. Adrenal tropism of SARS-CoV-2 and adrenal findings in a post-mortem case series of patients with severe fatal COVID-19. Nat Commun 2022; 13: 1589
  • 33 Leyendecker P, Ritter S, Riou M. et al. Acute adrenal infarction as an incidental CT finding and a potential prognosis factor in severe SARS-CoV-2 infection: a retrospective cohort analysis on 219 patients. Eur Radiol 2021; 31: 895-900
  • 34 Ilgar M, Unlu S, Akcicek M. Can evaluating adrenal glands in computed tomography contribute to predicting the prognosis of hospitalized COVID-19 patients?. Eur Rev Med Pharmacol Sci 2022; 26: 298-304
  • 35 Kumar R, Guruparan T, Siddiqi S. et al. A case of adrenal infarction in a patient with COVID 19 infection. BJR Case Rep 2020; 6: 20200075
  • 36 Tombolini A, Scendoni R. SARS-CoV-2-related deaths in routine forensic autopsy practice: histopathological patterns. Int J Legal Med 2020; 134: 2205-2208
  • 37 Heidarpour M, Vakhshoori M, Abbasi S. et al. Adrenal insufficiency in coronavirus disease 2019: a case report. J Med Case Rep 2020; 14: 134
  • 38 Frankel M, Feldman I, Levine M. et al. Bilateral adrenal hemorrhage in coronavirus disease 2019 patient: a case report. J Clin Endocrinol Metab 2020; 105 dgaa487 DOI: 10.1210/clinem/dgaa487.
  • 39 Machado IFR, Menezes IQ, Figueiredo SR. et al. Primary adrenal insufficiency due to bilateral adrenal infarction in COVID-19: a case report. J Clin Endocrinol Metab 2021; DOI: 10.1210/clinem/dgab557.
  • 40 Sanchez J, Cohen M, Zapater JL. et al. Primary adrenal insufficiency after COVID-19 infection. AACE Clin Case Rep 2021; DOI: 10.1016/j.aace.2021.11.001.
  • 41 Paolo WF, Nosanchuk JD. Adrenal infections. Int J Infect Dis 2006; 10: 343-353
  • 42 Huebener KH, Treugut H. Adrenal cortex dysfunction: CT findings. Radiology 1984; 150: 195-199
  • 43 Hoffmann M, Kleine-Weber H, Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271-280 e278
  • 44 Zhou L, Niu Z, Jiang X. et al. SARS-CoV-2 Targets by the pscRNA profiling of ACE2. TMPRSS2 and furin proteases. iScience 2020; 23: 101744
  • 45 Mao Y, Xu B, Guan W. et al. The adrenal cortex, an underestimated site of SARS-CoV-2 infection. Front Endocrinol (Lausanne) 2020; 11: 593179
  • 46 Hikmet F, Mear L, Edvinsson A. et al. The protein expression profile of ACE2 in human tissues. Mol Syst Biol 2020; 16: e9610
  • 47 Lempp FA, Soriaga LB, Montiel-Ruiz M. et al. Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature 2021; 598: 342-347
  • 48 Wei C, Wan L, Yan Q. et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab 2020; 2: 1391-1400
  • 49 Bayati A, Kumar R, Francis V. et al. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem 2021; 296: 100306
  • 50 Chifu I, Detomas M, Dischinger U. et al. Management of patients with glucocorticoid-related diseases and COVID-19. Front Endocrinol (Lausanne) 2021; 12: 705214
  • 51 Boonen E, Bornstein SR, Van den Berghe G. New insights into the controversy of adrenal function during critical illness. Lancet Diabetes Endocrinol 2015; 3: 805-815
  • 52 Bordes SJ, Phang-Lyn S, Najera E. et al. Pituitary apoplexy attributed to COVID-19 infection in the absence of an underlying macroadenoma or other identifiable cause. Cureus 2021; 13: e13315
  • 53 Solorio-Pineda S, Almendarez-Sanchez CA, Tafur-Grandett AA. et al. Pituitary macroadenoma apoplexy in a severe acute respiratory syndrome-coronavirus-2-positive testing: Causal or casual?. Surg Neurol Int 2020; 11: 304
  • 54 Lazartigues E, Qadir MMF, Mauvais-Jarvis F. Endocrine significance of SARS- CoV-2’s reliance on ACE2. Endocrinology 2020; 161 bqaa108 DOI: 10.1210/endocr/bqaa108.
  • 55 Rhea EM, Logsdon AF, Hansen KM. et al. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci 2021; 24: 368-378
  • 56 Ding Y, He L, Zhang Q. et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004; 203: 622-630
  • 57 Bryce C, Grimes Z, Pujadas E. et al. Pathophysiology of SARS-CoV-2: the Mount Sinai COVID-19 autopsy experience. Mod Pathol 2021; 34: 1456-1467
  • 58 Sterne JAC, Murthy S, Diaz JV. et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA 2020; 324: 1330-1341
  • 59 Tan T, Khoo B, Mills EG. et al. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol 2020; 8: 659-660
  • 60 Tan T, Khoo B, Mills EG. et al. Cortisol concentrations and mortality from COVID-19 – Authors’ reply. Lancet Diabetes Endocrinol 2020; 8: 809-810
  • 61 Guven M, Gultekin H. Could serum total cortisol level at admission predict mortality due to coronavirus disease 2019 in the intensive care unit? A prospective study. Sao Paulo Med J 2021; 139: 398-404
  • 62 Alzahrani AS, Mukhtar N, Aljomaiah A. et al. The impact of Covid-19 viral infection on the hypothalamic-pituitary-adrenal axis. Endocr Pract 2020; S1530-891X(20)48393-4 [pii]; DOI: 10.1016/j.eprac.2020.10.014.
  • 63 Ahmadi I, Estabraghnia Babaki H, Maleki M. et al. Changes in physiological levels of cortisol and adrenocorticotropic hormone upon hospitalization can predict SARS-CoV-2 mortality: a cohort study. Int J Endocrinol 2022; 4280691
  • 64 Das L, Dutta P, Walia R. et al. Spectrum of endocrine dysfunction and association with disease severity in patients with COVID-19: insights from a cross-sectional, observational study. Front Endocrinol (Lausanne) 2021; 12: 645787
  • 65 Yavropoulou MP, Filippa MG, Mantzou A. et al. Alterations in cortisol and interleukin-6 secretion in patients with COVID-19 suggestive of neuroendocrine-immune adaptations. Endocrine 2022; 75: 317-327
  • 66 Araque K, Gubbi S, Romero F. et al. Steroid and thyroid hormone profiles in patients hospitalized with SARS-CoV-2. SSRN Electron J 2022; DOI: 10.2139/ssrn.4001462.
  • 67 Masjkur J, Barthel A, Kanczkowski W. et al. Practical recommendations for screening and management of functional disorders of the adrenal cortex in cases of SARS-CoV-2 infections. Internist (Berl) 2022; 63: 4-11
  • 68 Chua MWJ, Chua MPW. Delayed onset of central hypocortisolism in a patient recovering from COVID-19. AACE Clin Case Rep 2021; 7: 2-5
  • 69 Consortium WHOST, Pan H, Peto R et al. Repurposed antiviral drugs for Covid-19 – interim WHO solidarity trial results. N Engl J Med 2021; 384: 497-511
  • 70 Rosas IO, Brau N, Waters M. et al. Tocilizumab in hospitalized patients with severe Covid-19 pneumonia. N Engl J Med 2021; 384: 1503-1516
  • 71 Mulvihill E, Gannon M, Balasubramaniam A. et al. Bilateral adrenal haemorrhage complicated by sepsis, coagulopathy, influenza A and adrenal crisis. BMJ Case Rep 2020; 13: e238628 DOI: 10.1136/bcr-2020-238628.
  • 72 O’Brien MP, Forleo-Neto E, Sarkar N. et al. Effect of subcutaneous casirivimab and imdevimab antibody combination vs placebo on development of symptomatic COVID-19 in early asymptomatic SARS-CoV-2 infection: a randomized clinical trial. JAMA 2022; 327: 432-441
  • 73 Ledford H. Antibody therapies could be a bridge to a coronavirus vaccine – but will the world benefit?. Nature 2020; 584: 333-334
  • 74 Ramakrishnan S, Nicolau DV, Langford B. et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respir Med 2021 S2213-2600(21)00160-0[pii]; DOI: 10.1016/S2213-2600(21)00160-0.
  • 75 Yu LM, Bafadhel M, Dorward J. et al. Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet 2021; 398: 843-855
  • 76 Alexaki VI, Henneicke H. The role of glucocorticoids in the management of COVID-19. Horm Metab Res 2021; 53: 9-15
  • 77 Clarke SA, Phylactou M, Patel B. et al. Normal adrenal and thyroid function in patients who survive COVID-19 infection. J Clin Endocrinol Metab 2021; 106: 2208-2220
  • 78 Leow MK, Kwek DS, Ng AW. et al. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf) 2005; 63: 197-202