Subscribe to RSS
DOI: 10.1055/a-1868-4918
IMPORTANCE of PRETREATMENT 18F-FDG PET/CT TEXTURE ANALYSIS in PREDICTING EGFR and ALK MUTATION in PATIENTS with NON-SMALL CELL LUNG CANCER
Bedeutung der Vorbehandlung bei 18F-FDG-PET/CT – Texturanalyse zur Vorhersage von EGFR- und ALK-Mutation bei Patient*innen mit nichtkleinzelligem LungenkrebsAbstract
Objective Identification of anaplastic lymphoma kinase (ALK) and epidermal growth factor receptor (EGFR) mutation types is of great importance before treatment with tyrosine kinase inhibitors (TKIs). Radiomics is a new strategy for noninvasively predicting the genetic status of cancer. We aimed to evaluate the predictive power of 18F-FDG PET/CT-based radiomic features for mutational status before treatment in non-small cell lung cancer (NSCLC) and to develop a predictive model based on radiomic features.
Methods Images of patients who underwent 18F-FDG PET/CT for initial staging with the diagnosis of NSCLC between January 2015 and July 2020 were evaluated using LIFEx software. The region of interest (ROI) of the primary tumor was established and volumetric and textural features were obtained. Clinical data and radiomic data were evaluated with machine learning (ML) algorithms to create a model.
Results For EGFR mutation prediction, the most successful machine learning algorithm obtained with GLZLM_GLNU and clinical data was Naive Bayes (AUC: 0.751, MCC: 0.347, acc: 71.4%). For ALK rearrangement prediction, the most successful machine learning algorithm obtained with GLCM_correlation, GLZLM_LZHGE and clinical data was evaluated as Naive Bayes (AUC: 0.682, MCC: 0.221, acc: 77.4%).
Conclusions In our study, we created prediction models based on radiomic analysis of 18F-FDG PET/CT images. Tissue analysis with ML algorithms are non-invasive methods for predicting ALK rearrangement and EGFR mutation status in NSCLC, which may be useful for targeted therapy selection in a clinical setting.
Publication History
Received: 18 November 2021
Accepted after revision: 01 June 2022
Article published online:
17 August 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5-29 DOI: 10.3322/caac.21254. (PMID: 25559415)
- 2 Jorge SEDC, Kobayashi SS, Costa DB. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data. Braz J Med Biol Res 2014; 47: 929-939
- 3 Putora PM, Schneider T, Rodriguez R. et al. Targeted therapy in non-small cell lung cancer. Breathe 2012; 8: 206-215
- 4 Solomon BJ. et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 2014; 371: 2167-2177 DOI: 10.1056/NEJMoa1408440. (PMID: 25470694)
- 5 Wang S, Shi J, Ye Z. et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J 2019; 53: 1800986 DOI: 10.1183/13993003.00986-2018. (PMID: 30635290)
- 6 Kuo MD, Jamshidi N. Behind the numbers: decoding molecular phenotypes with radiogenomics guiding principles and technical considerations. Radiology 2014; 270 (02) 320-325 DOI: 10.1148/radiol.13132195. (PMID: 24471381)
- 7 Chicklore S, Goh V, Siddique M. et al. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 2013; 40 (01) 133-140 DOI: 10.1007/s00259-012-2247-0. (PMID: 23064544)
- 8 Orlhac F, Soussan M, Maisonobe JA. et al. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 2014; 55 (03) 414-422 DOI: 10.2967/jnumed.113.129858. (PMID: 24549286)
- 9 Boellaard R, Delgado-Bolton R, Oyen WJ. et al. FDGPET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015; 42: 328-354
- 10 Nioche C, Orlhac F, Boughdad S. et al. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 2018; 78: 4786-4789 DOI: 10.1158/0008-5472.CAN-18-0125. (PMID: 29959149)
- 11 Lv Z, Fan J, Xu J. et al. Value of (18)F-FDG PET/CT for predicting EGFR mutations and positive ALK expression in patients with non-small cell lung cancer: a retrospective analysis of 849 Chinese patients. Eur J Nucl Med Mol Imaging 2018; 45: 735-750 DOI: 10.1007/s00259-017-3885-z. (PMID: 29164298)
- 12 Minamimoto R, Jamali M, Gevaert O. et al. Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative (18)F FDG-PET/CT metrics. Oncotarget 2017; 8: 52792-52801 DOI: 10.18632/oncotarget.17782. (PMID: 28881771)
- 13 Zhu L, Yin G, Chen W. et al. Correlation between EGFR mutation status and F (18)-fluorodeoxyglucose positron emission tomography-computed tomography image features in lung adenocarcinoma. Thoracic Cancer 2019; 10: 659-664 DOI: 10.1111/1759-7714.12981. (PMID: 30776196)
- 14 Gu J, Xu S, Huang L. et al. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer. J Thorac Dis 2018; 10: 723-731 DOI: 10.21037/jtd.2017.12.143. (PMID: 29607142)
- 15 Lee EY, Khong PL, Lee VH. et al. Metabolic phenotype of stage IV lung adenocarcinoma: relationship with epidermal growth factor receptor mutation. Clin Nucl Med 2015; 40: e190-e195 DOI: 10.1097/RLU.0000000000000684. (PMID: 25608155)
- 16 Zhang JY, Zhao X, Zhao Y. et al. Value of pre-therapy 18-F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer. European Journal of Nuclear Medicine and Molecular Imaging 2020; 47: 1137-1146 DOI: 10.1007/s00259-019-04592-1. (PMID: 31728587)
- 17 Aerts HJ, Velazquez ER, Leijenaar RT. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5: 4006 DOI: 10.1038/ncomms5006. (PMID: 24892406)
- 18 Yip SS, Kim J, Coroller TP. et al. Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer. J Nucl Med 2017; 58: 569-576 DOI: 10.2967/jnumed.116.181826. (PMID: 27688480)
- 19 Rios Velazquez E, Parmar C, Liu Y. et al. Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 2017; 77: 3922-3930 DOI: 10.1158/0008-5472.CAN-17-0122. (PMID: 28566328)
- 20 Chang C, Zhou S, Yu H. et al. A clinically practical radiomics-clinical combined model based on PET/CT data and nomogram predicts EGFR mutation in lung adenocarcinoma. Eur Radiol 2021; 31 (08) 6259-6268 DOI: 10.1007/s00330-020-07676-x. (PMID: 33544167)
- 21 Solomon BJ, Mok T, Kim DW. et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 2014; 371: 2167-2177 DOI: 10.1056/NEJMoa1408440. (PMID: 25470694)
- 22 Chang C, Sun X, Wang G. et al. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts ALK Rearrangement Status in Lung Adenocarcinoma. Front Oncol 2021; 11: 603882 DOI: 10.3389/fonc.2021.603882.
- 23 Zhang M, Bao Y, Rui W. et al. Performance of 18F-FDG PET/CT Radiomics for Predicting EGFR Mutation Status in Patients with Non-Small Cell Lung Cancer. Front Oncol 2020; 08: 568857 DOI: 10.3389/fonc.2020.568857.
- 24 Jeong CJ, Lee HY, Han J. et al. Role of imaging biomarkers in predicting anaplastic lymphoma kinase-positive lung adenocarcinoma. Clin Nucl Med 2015; 40: e34-e39 DOI: 10.1097/RLU.0000000000000581. (PMID: 25243942)
- 25 Choi H, Paeng JC, Kim DW. et al. Metabolic and metastatic characteristics of ALK-rearranged lung adenocarcinoma on FDG PET/CT. Lung Cancer 2013; 79: 242-247 DOI: 10.1016/j.lungcan.2012.11.021. (PMID: 23261227)