Subscribe to RSS
DOI: 10.1055/a-1866-4653
Concise One-Pot Multicomponent Reaction Approach to Monofluorinated Spiro-pyrazole-pyridine Derivatives without Additional Catalyst
The authors thank the Data Center of Management Science, National Natural Science Foundation of China - Peking University (NNSFC, Grant No. 21272153), and also the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences for financial support.
Abstract
Monofluorinated bis-heterocyclic spirocycles: functionalized ethyl 9-fluoro-8-methyl-1,4-dioxo-2,3,6,10-tetraphenyl-2,3,7-triazaspiro[4.5]dec-7-ene-9-carboxylate derivatives were efficiently synthesized from readily available 1,2-diphenylpyrazolidine-3,5-dione, ethyl 2-fluoroacetoacetate, aromatic aldehydes, and ammonium acetate via one-pot four-component reactions in the absence of additional catalyst. In the protocols, ammonium acetate serves not only as the fourth component but also as the catalyst.
Key words
one-pot multicomponent reaction - ethyl 2-fluoroacetoacetate - 1,2-diphenylpyrazolidine-3,5-dione - fluorinated spiro-pyrazole-pyridine derivativesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1866-4653.
- Supporting Information
Publication History
Received: 18 April 2022
Accepted after revision: 16 May 2022
Accepted Manuscript online:
01 June 2022
Article published online:
02 August 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 1b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 1c O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 1d Meanwell NA. J. Med. Chem. 2018; 61: 5822
- 1e Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
- 1f Rozatian N, Beeby A, Ashworth IW, Sandford G, Hodgson DR. W. Chem. Sci. 2019; 10: 10318
- 2 Panathur N, Gokhale N, Dalimba U, Koushik PV, Yogeeswari P, Sriram D. Bioorg. Med. Chem. Lett. 2015; 25: 2768
- 3 Shu C, Feng J, Zheng H, Cheng C, Yuan Z, Zhang Z, Xue X, Zhu G. Org. Lett. 2020; 22: 9398
- 4a Risitano F, Grassi G, Foti F, Nicolò F, Condello M. Tetrahedron 2002; 58: 191
- 4b Mustazza C, Borioni A, Sestili I, Sbraccia M, Rodomonte A, Ferretti R, Del Giudice MR. Chem. Pharm. Bull. 2006; 54: 611
- 4c Dandia A, Gautam S, Jain AK. J. Fluorine Chem. 2007; 128: 1454
- 5a Chambers MS, Baker R, Billington DC, Knight AK, Middlemiss DN, Wong EH. J. Med. Chem. 1992; 35: 2033
- 5b Marchese AD, Durant AG, Lautens M. Org. Lett. 2022; 24: 95
- 5c Shojaei R, Zahedifar M, Mohammadi P, Saidi K, Sheibani H. J. Mol. Struct. 2019; 1178: 401
- 6 García-Vázquea V, Hoteite L, Lakeland CP, Watson DW, Harrity JP. A. Org. Lett. 2021; 23: 2811
- 7a Pradhan K, Bhattacharyya P, Paul S, Das AR. Tetrahedron Lett. 2012; 53: 5840
- 7b Liu Y.-P, Liu J.-M, Wang X, Cheng T.-M, Li R.-T. Tetrahedron 2013; 69: 5242
- 7c Kalam KF. A, Zaheer Z, Sangshetti JN, Patil RH, Farooqui M. Bioorg. Med. Chem. Lett. 2017; 27: 567
- 8 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 9a Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
- 9b Graaff C, Ruijter E, Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
- 9c Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 9d Cioc RC, Ruijter E, Orru RV. A. Green Chem. 2014; 16: 2958
- 10 Dömling A. Curr. Opin. Chem. Biol. 2002; 6: 306
- 11 Ulomskiy EN, Medvedeva NR, Shchepochkin AV, Eltsov OS, Rusinov VL, Chupakhin ON, Deeva EG, Kiselev OI. Chem. Heterocycl. Compd. 2011; 47: 1164
- 12a Kozma V, Szöllösi G. Mol. Catal. 2022; 518: 112089
- 12b Lv Y, Pu W, Zhu X, Chen C, Wang S. J. Org. Chem. 2021; 86: 10043
- 12c Hou Z.-W, Jiang T, Wu T.-X, Wang L. Org. Lett. 2021; 23: 8585
- 12d Suzuki K, Tsuji H, Kawatsura M. Chem. Commun. 2020; 56: 3273
- 12e Jafari B, Yelibayeva N, Ospanov M, Ejaz SA, Afzal S, Khan SU, Abilov ZA, Turmukhanova MZ, Kalugin SN, Safarov S, Lecka J, Sévigny J, Rahman Q, Ehlers P, Iqbal J, Langer P. RSC Adv. 2016; 6: 107556
- 12f Wang Q.-Q, Zhang S.-G, Jiao J, Dai P, Zhang W.-H. Molecules 2021; 26: 372
- 12g Zhang X, Ma X, Qiu W, Evans J, Zhang W. Green Chem. 2019; 21: 349
- 13a Zhang X.-Y, Gu Y.-F, Chen T, Yang D.-X, Wang X.-X, Jiang B.-L, Shao K.-P, Zhao W, Wang C, Wang J.-W, Zhang Q.-R, Liu H.-M. MedChemComm 2015; 6: 1781
- 13b Ten BA, Dekkers DW, Notten SM, Karsten ML, Groot ER, Arden LA. Eur. Cytokine Network 2005; 16: 144
- 13c Gilbert AM, Failli A, Shumsky J, Yang Y, Severin A, Singh G, Hu W, Keeney D, Petersen PJ, Katz AH. J. Med. Chem. 2006; 49: 6027
- 13d Kapadia GJ, Azuine MA, Shigeta Y, Suzuki N, Tokuda H. Bioorg. Med. Chem. Lett. 2010; 20: 2546
- 13e Khudina OG, Burgart YV, Saloutin VI. Mendeleev Commun. 2020; 30: 630
- 14 Hemmer JR, Page ZA, Clark KD, Stricker F, Dolinski ND, Hawker CJ, de Alaniz JR. J. Am. Chem. Soc. 2018; 140: 10425
- 15a Humeniuk HV, Derevyanko NA, Ishchenko AA, Kulinich AV. New J. Chem. 2019; 43: 13954
- 15b MacNevin CJ, Gremyachinskiy D, Hsu C.-W, Li L, Rougie M, Davis TT, Hahn KM. Bioconjugate Chem. 2013; 24: 215
- 16a Xu XL, Shi W, Zhou Y, Wang Y, Zhang M, Song L, Deng H. J. Fluorine Chem. 2015; 176: 127
- 16b Li Z, Liu Y, Zhang Y, Duan W, Wang Y, Zhang M, Deng H, Song L. J. Fluorine Chem. 2021; 247: 109800
- 17 CCDC 2152316 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.