Z Gastroenterol 2022; 60(11): e812-e909
DOI: 10.1055/a-1856-7346
Leitlinie

S3-Leitlinie zum exokrinen Pankreaskarzinom – Langversion 2.0 – Dezember 2021 – AWMF-Registernummer: 032/010OL

Thomas Seufferlein
1   Klinik für Innere Medizin I, Universitätsklinikum Ulm, Germany
,
Julia Mayerle
2   Klinik für Innere Medizin II, LMU München, Germany
,
Stefan Böck
3   Medizinische Klinik und Poliklinik III, Universitätsklinikum München, Germany
,
Thomas Brunner
4   Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz, Austria
,
1   Klinik für Innere Medizin I, Universitätsklinikum Ulm, Germany
,
Lars Grenacher
5   Conradia Radiologie München Schwabing, München, Germany
,
Thomas Mathias Gress
6   Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Germany
,
Thilo Hackert
7   Klinik für Allgemein-, Viszeral- und Transplantationschirurgie Universitätsklinikum, Heidelberg, Germany
,
Volker Heinemann
8   Medizinische Klinik und Poliklinik III, Klinikum der Universität München-Campus Grosshadern, München, Germany
,
1   Klinik für Innere Medizin I, Universitätsklinikum Ulm, Germany
,
Marianne Sinn
9   Universitätsklinikum Hamburg-Eppendorf Medizinische Klinik und Poliklinik II Onkologie Hämatologie, Hamburg, Germany
,
Andrea Tannapfel
10   Institut für Pathologie Ruhr-Universität Bochum, Germany
,
Ulrich Wedding
11   Palliativmedizin, Universitätsklinikum, Jena, Germany
,
Waldemar Uhl
12   Allgemein- und Viszeralchirurgie, St Josef-Hospital, Bochum, Germany
› Author Affiliations


Publication History

Article published online:
11 November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften – Ständige Kommission, L. AWMF-Regelwerk “Leitlinien”. 2. Auflage 2020 [cited 12.12.2021]. Available from: http://www.awmf.org/leitlinien/awmf-regelwerk/awmf-regelwerk.html
  • 2 ZfKD and GEKID, Krebs in Deutschland, in Bauchspeicheldrüse, RKI, Editor. 2016
  • 3 ZfKD. Krebsarten. 2019 Available from: https://www.krebsdaten.de/Krebs/DE/Content/Krebsarten/krebsarten_node.html
  • 4 Fernandez E, La Vecchia C, Decarli A. Attributable risks for pancreatic cancer in northern Italy. Cancer Epidemiol Biomarkers Prev 1996; 5 (01) 23-27
  • 5 Ji BT. et al. Dietary factors and the risk of pancreatic cancer: a case-control study in Shanghai China. Cancer Epidemiol Biomarkers Prev 1995; 4 (08) 885-893
  • 6 Soler M. et al. Diet, alcohol, coffee and pancreatic cancer: final results from an Italian study. Eur J Cancer Prev 1998; 7 (06) 455-460
  • 7 Nkondjock A. et al. Dietary patterns and risk of pancreatic cancer. Int J Cancer 2005; 114 (05) 817-823
  • 8 Nothlings U. et al. Meat and fat intake as risk factors for pancreatic cancer: the multiethnic cohort study. J Natl Cancer Inst 2005; 97 (19) 1458-1465
  • 9 Glade MJ. Food, nutrition, and the prevention of cancer: a global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition 1999; 15 (06) 523-526
  • 10 Michaud DS. et al. Dietary meat, dairy products, fat, and cholesterol and pancreatic cancer risk in a prospective study. Am J Epidemiol 2003; 157 (12) 1115-1125
  • 11 Michaud DS. et al. Dietary patterns and pancreatic cancer risk in men and women. J Natl Cancer Inst 2005; 97 (07) 518-524
  • 12 Hine RJ. et al. Nutritional links to plausible mechanisms underlying pancreatic cancer: a conference report. Pancreas 2003; 27 (04) 356-366
  • 13 Bueno de Mesquita HB. et al. Intake of foods and nutrients and cancer of the exocrine pancreas: a population-based case-control study in The Netherlands. Int J Cancer 1991; 48 (04) 540-549
  • 14 Lyon JL. et al. Dietary intake as a risk factor for cancer of the exocrine pancreas. Cancer Epidemiol Biomarkers Prev 1993; 2 (06) 513-518
  • 15 Fraser GE. Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California Seventh-day Adventists. Am J Clin Nutr 1999; 70 (03) 532S-538S
  • 16 Mills PK. et al. Dietary habits and past medical history as related to fatal pancreas cancer risk among Adventists. Cancer 1988; 61 (12) 2578-2585
  • 17 Chan JM, Wang F, Holly EA. Vegetable and fruit intake and pancreatic cancer in a population-based case-control study in the San Francisco bay area. Cancer Epidemiol Biomarkers Prev 2005; 14 (09) 2093-2097
  • 18 Negri E. et al. Vegetable and fruit consumption and cancer risk. Int J Cancer 1991; 48 (03) 350-354
  • 19 Larsson SC. et al. Fruit and vegetable consumption in relation to pancreatic cancer risk: a prospective study. Cancer Epidemiol Biomarkers Prev 2006; 15 (02) 301-305
  • 20 Vainio H, Weiderpass E. Fruit and vegetables in cancer prevention. Nutr Cancer 2006; 54 (01) 111-142
  • 21 Lin Y. et al. Nutritional factors and risk of pancreatic cancer: a population-based case-control study based on direct interview in Japan. J Gastroenterol 2005; 40 (03) 297-301
  • 22 Stolzenberg-Solomon RZ. et al. Prospective study of diet and pancreatic cancer in male smokers. Am J Epidemiol 2002; 155 (09) 783-792
  • 23 Zhang J, Zhao Z, Berkel HJ. Animal fat consumption and pancreatic cancer incidence: evidence of interaction with cigarette smoking. Ann Epidemiol 2005; 15 (07) 500-508
  • 24 Anderson KE. et al. Meat intake and cooking techniques: associations with pancreatic cancer. Mutat Res 2002; 506–507: 225-231
  • 25 Anderson KE. et al. Dietary intake of heterocyclic amines and benzo(a)pyrene: associations with pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2005; 14 (09) 2261-2265
  • 26 Ghadirian P. et al. Food habits and pancreatic cancer: a case-control study of the Francophone community in Montreal, Canada. Cancer Epidemiol Biomarkers Prev 1995; 4 (08) 895-899
  • 27 Fernandez E. et al. Fish consumption and cancer risk. Am J Clin Nutr 1999; 70 (01) 85-90
  • 28 Michaud DS. et al. Dietary sugar, glycemic load, and pancreatic cancer risk in a prospective study. J Natl Cancer Inst 2002; 94 (17) 1293-1300
  • 29 Silvera SA. et al. Glycemic index, glycemic load, and pancreatic cancer risk (Canada). Cancer Causes Control 2005; 16 (04) 431-436
  • 30 Schernhammer ES. et al. Sugar-sweetened soft drink consumption and risk of pancreatic cancer in two prospective cohorts. Cancer Epidemiol Biomarkers Prev 2005; 14 (09) 2098-2105
  • 31 Lin Y. et al. Risk of pancreatic cancer in relation to alcohol drinking, coffee consumption and medical history: findings from the Japan collaborative cohort study for evaluation of cancer risk. Int J Cancer 2002; 99 (05) 742-746
  • 32 Michaud DS. et al. Coffee and alcohol consumption and the risk of pancreatic cancer in two prospective United States cohorts. Cancer Epidemiol Biomarkers Prev 2001; 10 (05) 429-437
  • 33 Silverman DT. Risk factors for pancreatic cancer: a case-control study based on direct interviews. Teratog Carcinog Mutagen 2001; 21 (01) 7-25
  • 34 Brown LM. Epidemiology of alcohol-associated cancers. Alcohol 2005; 35 (03) 161-168
  • 35 Ye W. et al. Alcohol abuse and the risk of pancreatic cancer. Gut 2002; 51 (02) 236-239
  • 36 Talamini G. et al. Alcohol and smoking as risk factors in chronic pancreatitis and pancreatic cancer. Dig Dis Sci 1999; 44 (07) 1303-1311
  • 37 MacMahon B. et al. Coffee and cancer of the pancreas. N Engl J Med 1981; 304 (11) 630-633
  • 38 Gullo L, Pezzilli R, Morselli-Labate AM. Coffee and cancer of the pancreas: an Italian multicenter study. The Italian Pancreatic Cancer Study Group. Pancreas 1995; 11 (03) 223-229
  • 39 Lyon JL. et al. Coffee consumption and the risk of cancer of the exocrine pancreas: a case-control study in a low-risk population. Epidemiology 1992; 3 (02) 164-170
  • 40 Harnack LJ. et al. Smoking, alcohol, coffee, and tea intake and incidence of cancer of the exocrine pancreas: the Iowa Women’s Health Study. Cancer Epidemiol Biomarkers Prev 1997; 6 (12) 1081-1086
  • 41 Qiu D. et al. Overview of the epidemiology of pancreatic cancer focusing on the JACC Study. J Epidemiol 2005; 15 (Suppl. 02) S157-S167
  • 42 Tavani A, La Vecchia C. Coffee and cancer: a review of epidemiological studies, 1990–1999. Eur J Cancer Prev 2000; 9 (04) 241-256
  • 43 La Vecchia C. et al. Tea consumption and cancer risk. Nutr Cancer 1992; 17 (01) 27-31
  • 44 Nagano J. et al. A prospective study of green tea consumption and cancer incidence, Hiroshima and Nagasaki (Japan). Cancer Causes Control 2001; 12 (06) 501-508
  • 45 Hemminki K, Dong C, Vaittinen P. Cancer risks to spouses and offspring in the Family-Cancer Database. Genet Epidemiol 2001; 20 (02) 247-257
  • 46 Hemminki K, Jiang Y. Cancer risks among long-standing spouses. Br J Cancer 2002; 86 (11) 1737-1740
  • 47 Nilsen TI, Vatten LJ. A prospective study of lifestyle factors and the risk of pancreatic cancer in Nord-Trondelag, Norway. Cancer Causes Control 2000; 11 (07) 645-652
  • 48 Berrington de Gonzalez A, Sweetland S, Spencer E. A meta-analysis of obesity and the risk of pancreatic cancer. Br J Cancer 2003; 89 (03) 519-523
  • 49 Michaud DS. et al. Physical activity, obesity, height, and the risk of pancreatic cancer. Jama 2001; 286 (08) 921-929
  • 50 Patel AV. et al. Obesity, recreational physical activity, and risk of pancreatic cancer in a large U.S. Cohort. Cancer Epidemiol Biomarkers Prev 2005; 14 (02) 459-466
  • 51 Rapp K. et al. Obesity and incidence of cancer: a large cohort study of over 145000 adults in Austria. Br J Cancer 2005; 93 (09) 1062-1067
  • 52 Larsson SC. et al. Overall obesity, abdominal adiposity, diabetes and cigarette smoking in relation to the risk of pancreatic cancer in two Swedish population-based cohorts. Br J Cancer 2005; 93 (11) 1310-1315
  • 53 Berrington de Gonzalez A. et al. Anthropometry, physical activity, and the risk of pancreatic cancer in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 2006; 15 (05) 879-885
  • 54 Silverman DT. et al. Dietary and nutritional factors and pancreatic cancer: a case-control study based on direct interviews. J Natl Cancer Inst 1998; 90 (22) 1710-1719
  • 55 Stolzenberg-Solomon RZ. et al. A prospective study of medical conditions, anthropometry, physical activity, and pancreatic cancer in male smokers (Finland). Cancer Causes Control 2002; 13 (05) 417-426
  • 56 Hanley AJ. et al. Physical activity, anthropometric factors and risk of pancreatic cancer: results from the Canadian enhanced cancer surveillance system. Int J Cancer 2001; 94 (01) 140-147
  • 57 Coughlin SS. et al. Predictors of pancreatic cancer mortality among a large cohort of United States adults. Cancer Causes Control 2000; 11 (10) 915-923
  • 58 Lin Y. et al. A prospective cohort study of cigarette smoking and pancreatic cancer in Japan. Cancer Causes Control 2002; 13 (03) 249-254
  • 59 Yun YH. et al. Cigarette smoking and cancer incidence risk in adult men: National Health Insurance Corporation Study. Cancer Detect Prev 2005; 29 (01) 15-24
  • 60 Chiu BC. et al. Cigarette smoking and risk of bladder, pancreas, kidney, and colorectal cancers in Iowa. Ann Epidemiol 2001; 11 (01) 28-37
  • 61 Bonelli L. et al. Exocrine pancreatic cancer, cigarette smoking, and diabetes mellitus: a case-control study in northern Italy. Pancreas 2003; 27 (02) 143-149
  • 62 Duell EJ. et al. A population-based, case-control study of polymorphisms in carcinogen-metabolizing genes, smoking, and pancreatic adenocarcinoma risk. J Natl Cancer Inst 2002; 94 (04) 297-306
  • 63 Miyasaka K. et al. Inactive aldehyde dehydrogenase-2 increased the risk of pancreatic cancer among smokers in a Japanese male population. Pancreas 2005; 30 (02) 95-98
  • 64 Wang L. et al. Genetic polymorphisms in methylenetetrahydrofolate reductase and thymidylate synthase and risk of pancreatic cancer. Clin Gastroenterol Hepatol 2005; 3 (08) 743-751
  • 65 Villeneuve PJ. et al. Environmental tobacco smoke and the risk of pancreatic cancer: findings from a Canadian population-based case-control study. Can J Public Health 2004; 95 (01) 32-37
  • 66 Alguacil J, Pollan M, Gustavsson P. Occupations with increased risk of pancreatic cancer in the Swedish population. Occup Environ Med 2003; 60 (08) 570-576
  • 67 Alguacil J. et al. Occupation and pancreatic cancer in Spain: a case-control study based on job titles. PANKRAS II Study Group. Int J Epidemiol 2000; 29 (06) 1004-1013
  • 68 Laakkonen A, Kauppinen T, Pukkala E. Cancer risk among Finnish food industry workers. Int J Cancer 2006; 118 (10) 2567-2571
  • 69 Fryzek JP. et al. A case-control study of self-reported exposures to pesticides and pancreas cancer in southeastern Michigan. Int J Cancer 1997; 72 (01) 62-67
  • 70 Ji BT. et al. Occupational exposure to pesticides and pancreatic cancer. Am J Ind Med 2001; 39 (01) 92-99
  • 71 Ojajarvi IA. et al. Occupational exposures and pancreatic cancer: a meta-analysis. Occup Environ Med 2000; 57 (05) 316-324
  • 72 Ojajarvi A. et al. Risk of pancreatic cancer in workers exposed to chlorinated hydrocarbon solvents and related compounds: a meta-analysis. Am J Epidemiol 2001; 153 (09) 841-850
  • 73 Weiderpass E. et al. Occupational exposures and gastrointestinal cancers among Finnish women. J Occup Environ Med 2003; 45 (03) 305-315
  • 74 Yassi A, Tate RB, Routledge M. Cancer incidence and mortality in workers employed at a transformer manufacturing plant: update to a cohort study. Am J Ind Med 2003; 44 (01) 58-62
  • 75 Ji J, Hemminki K. Socioeconomic and occupational risk factors for pancreatic cancer: a cohort study in Sweden. J Occup Environ Med 2006; 48 (03) 283-288
  • 76 Bjelakovic G. et al. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet 2004; 364: 1219-1228
  • 77 Harris RE. et al. Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review). Oncol Rep 2005; 13 (04) 559-583
  • 78 Jacobs EJ. et al. Aspirin use and pancreatic cancer mortality in a large United States cohort. J Natl Cancer Inst 2004; 96 (07) 524-528
  • 79 Coogan PF. et al. Nonsteroidal anti-inflammatory drugs and risk of digestive cancers at sites other than the large bowel. Cancer Epidemiol Biomarkers Prev 2000; 9 (01) 119-123
  • 80 Homma T, Tsuchiya R. The study of the mass screening of persons without symptoms and of the screening of outpatients with gastrointestinal complaints or icterus for pancreatic cancer in Japan, using CA19-9 and elastase-1 or ultrasonography. Int J Pancreatol 1991; 9: 119-124
  • 81 Kim JE. et al. Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol 2004; 19 (02) 182-186
  • 82 Force, U.P.S.T. Screening for Pancreatic Cancer: US Preventive Services Task Force Reaffirmation Recommendation Statement. JAMA 2019; 322 (05) 438-444
  • 83 Hart PA, Chari ST. Is Screening for Pancreatic Cancer in High-Risk Individuals One Step Closer or a Fool’s Errand?. Clin Gastroenterol Hepatol 2019; 17 (01) 36-38
  • 84 Sharma A. et al. Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes. Gastroenterology 2018; 155 (03) 730-739.e3
  • 85 Owens DK. et al. Screening for Pancreatic Cancer: US Preventive Services Task Force Reaffirmation Recommendation Statement. Jama 2019; 322 (05) 438-444
  • 86 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69 (01) 7-34
  • 87 Klein AP. et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 2004; 64 (07) 2634-2638
  • 88 Bartsch DK. et al. Refinement of screening for familial pancreatic cancer. Gut 2016; 65 (08) 1314-1321
  • 89 Goggins M. et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut 2019; 69 (01) 7-17
  • 90 Jacobs EJ. et al. Family history of cancer and risk of pancreatic cancer: a pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). Int J Cancer 2010; 127 (06) 1421-1428
  • 91 Bartsch DK. et al. CDKN2A germline mutations in familial pancreatic cancer. Ann Surg 2002; 236 (06) 730-737
  • 92 McFaul CD. et al. Anticipation in familial pancreatic cancer. Gut 2006; 55 (02) 252-258
  • 93 Tersmette AC. et al. Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer. Clin Cancer Res 2001; 7 (03) 738-744
  • 94 Stoffel EM. et al. Evaluating susceptibility to pancreatic cancer: ASCO provisional clinical opinion. Journal of Clinical Oncology 2019; 37 (02) 153-164
  • 95 Canto MI. et al. International cancer of the pancreas screening (CAPS) consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 2013; 62 (03) 339-347
  • 96 Goggins M. et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 1996; 56 (23) 5360-5364
  • 97 Roberts NJ. et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer discovery 2012; 2 (01) 41-46
  • 98 Kastrinos F. et al. Risk of pancreatic cancer in families with Lynch syndrome. Jama 2009; 302 (16) 1790-1795
  • 99 Roberts NJ. et al. Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discov 2016; 6 (02) 166-175
  • 100 Rosendahl J. et al. Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet 2008; 40 (01) 78-82
  • 101 Witt H. et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet 2013; 45 (10) 1216-1220
  • 102 Whitcomb DC. Genetic risk factors for pancreatic disorders. Gastroenterology 2013; 144 (06) 1292-1302
  • 103 Tamura K. et al. Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci U S A 2018; 115 (18) 4767-4772
  • 104 National Institute for, H. and E. Care, Pancreatic cancer in adults: diagnosis and management. NICE Guideline NG85. London: NICE; 2018
  • 105 Chaffee KG. et al. Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genetics in Medicine 2018; 20 (01) 119-127
  • 106 RECENT GRANTS. Baylor University Medical Center Proceedings. 2015 28. 523-523
  • 107 Shindo K. et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. Journal of Clinical Oncology 2017; 35 (30) 3382-3390
  • 108 Lowery MA. et al. Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. Journal of the National Cancer Institute 2018; 110 (10) djy024
  • 109 Wood LD, Yurgelun MB, Goggins MG. Genetics of Familial and Sporadic Pancreatic Cancer. Gastroenterology 2019; 156 (07) 2041-2055
  • 110 Yurgelun MB. et al. Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genetics in Medicine 2019; 21 (01) 213-223
  • 111 Bannon SA. et al. High prevalence of hereditary cancer syndromes and outcomes in adults with early-onset pancreatic cancer. Cancer Prevention Research 2018; 11 (11) 679-686
  • 112 Lucas AL. et al. BRCA1 and BRCA2 germline mutations are frequently demonstrated in both high-risk pancreatic cancer screening and pancreatic cancer cohorts. Cancer 2014; 120 (13) 1960-1967
  • 113 Abe T. et al. Deleterious Germline Mutations Are a Risk Factor for Neoplastic Progression Among High-Risk Individuals Undergoing Pancreatic Surveillance. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2019; JCO1801512 DOI: 10.1200/JCO.18.01512.
  • 114 Konings ICAW. et al. Prevalence and Progression of Pancreatic Cystic Precursor Lesions Differ Between Groups at High Risk of Developing Pancreatic Cancer. Pancreas 2017; 46 (01) 28-34
  • 115 Bruenderman EH, Martin RCG. High-risk population in sporadic pancreatic adenocarcinoma: Guidelines for screening. Journal of Surgical Research 2015; 194 (01) 212-219
  • 116 Canto MI. et al. Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance. Gastroenterology 2018; 155 (03) 740
  • 117 Lilley M, Gilchrist D. The hereditary spectrum of pancreatic cancer: the Edmonton experience. Can J Gastroenterol 2004; 18 (01) 17-21
  • 118 Couch FJ. et al. Germ line Fanconi anemia complementation group C mutations and pancreatic cancer. Cancer Res 2005; 65 (02) 383-386
  • 119 Howes N. et al. Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol 2004; 2 (03) 252-261
  • 120 Lowenfels AB. et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J Natl Cancer Inst 1997; 89 (06) 442-446
  • 121 Canto MI. et al. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 2006; 4 (06) 766-781; quiz 665
  • 122 Canto MI. et al. Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol 2004; 2 (07) 606-621
  • 123 Brentnall TA. Management strategies for patients with hereditary pancreatic cancer. Curr Treat Options Oncol 2005; 6 (05) 437-445
  • 124 Kimmey MB. et al. Screening and surveillance for hereditary pancreatic cancer. Gastrointest Endosc 2002; 56 (04) S82-S86
  • 125 Bansal P, Sonnenberg A. Pancreatitis is a risk factor for pancreatic cancer. Gastroenterology 1995; 109 (01) 247-251
  • 126 Karlson BM. et al. The risk of pancreatic cancer following pancreatitis: an association due to confounding?. Gastroenterology 1997; 113 (02) 587-592
  • 127 Lowenfels AB. et al. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 1993; 328 (20) 1433-1437
  • 128 Malka D. et al. Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut 2002; 51 (06) 849-852
  • 129 Talamini G. et al. Incidence of cancer in the course of chronic pancreatitis. Am J Gastroenterol 1999; 94 (05) 1253-1260
  • 130 Gullo L, Pezzilli R, Morselli-Labate AM. Diabetes and the risk of pancreatic cancer. Italian Pancreatic Cancer Study Group. N Engl J Med 1994; 331 (02) 81-84
  • 131 Rousseau MC. et al. Diabetes mellitus and cancer risk in a population-based case-control study among men from Montreal, Canada. Int J Cancer 2006; 118 (08) 2105-2109
  • 132 Coughlin SS. et al. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol 2004; 159 (12) 1160-1167
  • 133 Huxley R. et al. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer 2005; 92 (11) 2076-2083
  • 134 Stolzenberg-Solomon RZ. et al. Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. Jama 2005; 294 (22) 2872-28728
  • 135 Wideroff L. et al. Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer Inst 1997; 89 (18) 1360-1365
  • 136 Calle EE. et al. Diabetes mellitus and pancreatic cancer mortality in a prospective cohort of United States adults. Cancer Causes Control 1998; 9 (04) 403-410
  • 137 Chow WH. et al. Risk of pancreatic cancer following diabetes mellitus: a nationwide cohort study in Sweden. J Natl Cancer Inst 1995; 87 (12) 930-931
  • 138 Silverman DT. et al. Diabetes mellitus, other medical conditions and familial history of cancer as risk factors for pancreatic cancer. Br J Cancer 1999; 80 (11) 1830-1837
  • 139 Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. Jama 1995; 273 (20) 1605-1609
  • 140 Chari ST. et al. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology 2005; 129 (02) 504-511
  • 141 rBjornsson E. et al. Severe jaundice in Sweden in the new millennium: causes, investigations, treatment and prognosis. Scand J Gastroenterol 2003; 38 (01) 86-94
  • 142 Reisman Y. et al. Clinical presentation of (subclinical) jaundice--the Euricterus project in The Netherlands. United Dutch Hospitals and Euricterus Project Management Group. Hepatogastroenterology 1996; 43 (11) 1190-1195
  • 143 Watanabe I. et al. Onset symptoms and tumor locations as prognostic factors of pancreatic cancer. Pancreas 2004; 28 (02) 160-165
  • 144 Balthazar EJ. Pancreatitis associated with pancreatic carcinoma. Preoperative diagnosis: role of CT imaging in detection and evaluation. Pancreatology 2005; 5 (04) 330-344
  • 145 Mujica VR, Barkin JS, Go VL. Acute pancreatitis secondary to pancreatic carcinoma. Study Group Participants. Pancreas 2000; 21 (04) 329-332
  • 146 Adamek HE. et al. Pancreatic cancer detection with magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography: a prospective controlled study. Lancet 2000; 356: 190-193
  • 147 Hanninen EL. et al. Magnetic resonance cholangiopancreatography: image quality, ductal morphology, and value of additional T2- and T1-weighted sequences for the assessment of suspected pancreatic cancer. Acta Radiol 2005; 46 (02) 117-125
  • 148 Forsmark CE, Lambiase L, Vogel SB. Diagnosis of pancreatic cancer and prediction of unresectability using the tumor-associated antigen CA19-9. Pancreas 1994; 9 (06) 731-734
  • 149 Nazli O. et al. The diagnostic importance of CEA and CA 19-9 for the early diagnosis of pancreatic carcinoma. Hepatogastroenterology 2000; 47 (36) 1750-1752
  • 150 Ritts Jr RE. et al. Comparison of preoperative serum CA19-9 levels with results of diagnostic imaging modalities in patients undergoing laparotomy for suspected pancreatic or gallbladder disease. Pancreas 1994; 9 (06) 707-716
  • 151 Tessler DA. et al. Predictors of cancer in patients with suspected pancreatic malignancy without a tissue diagnosis. Am J Surg 2006; 191 (02) 191-197
  • 152 Agarwal B. et al. Endoscopic ultrasound-guided fine needle aspiration and multidetector spiral CT in the diagnosis of pancreatic cancer. Am J Gastroenterol 2004; 99 (05) 844-850
  • 153 Klapman JB. et al. Negative predictive value of endoscopic ultrasound in a large series of patients with a clinical suspicion of pancreatic cancer. Am J Gastroenterol 2005; 100 (12) 2658-2661
  • 154 Varadarajulu S, Wallace MB. Applications of endoscopic ultrasonography in pancreatic cancer. Cancer Control 2004; 11 (01) 15-22
  • 155 David O. et al. Pancreatic masses: a multi-institutional study of 364 fine-needle aspiration biopsies with histopathologic correlation. Diagn Cytopathol 1998; 19 (06) 423-427
  • 156 Bipat S. et al. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. J Comput Assist Tomogr 2005; 29 (04) 438-445
  • 157 James PD. et al. The incremental benefit of EUS for identifying unresectable disease among adults with pancreatic adenocarcinoma: A meta-analysis. PLoS One 2017; 12 (03) e0173687
  • 158 Krishna S. et al. Diagnostic performance of endoscopic ultrasound for detection of pancreatic malignancy following an indeterminate multidetector CT scan: a systemic review and meta-analysis. Surgical Endoscopy 2017; 31 (11) 4558-4567
  • 159 D’Onofrio M. et al. Pancreatic multicenter ultrasound study (PAMUS). Eur J Radiol 2012; 81 (04) 630-638
  • 160 D’Onofrio M. et al. SIUMB recommendations for focal pancreatic lesions. J Ultrasound 2020; 23 (04) 599-606
  • 161 Sohal DPS. et al. Metastatic Pancreatic Cancer: ASCO Clinical Practice Guideline Update. Journal of Clinical Oncology 2018; 36 (24) 2545-2556
  • 162 Sohal DPS. et al. Metastatic Pancreatic Cancer: ASCO Guideline Update. Journal of Clinical Oncology 2020; 38 (27) 3217-3230
  • 163 Chew C, O’Dwyer PJ. The value of liver magnetic resonance imaging in patients with findings of resectable pancreatic cancer on computed tomography. Singapore Medical Journal 2016; 57 (06) 334-338
  • 164 Ito T. et al. The diagnostic advantage of EOB-MR imaging over CT in the detection of liver metastasis in patients with potentially resectable pancreatic cancer. Pancreatology 2017; 17 (03) 451-456
  • 165 Jeon SK. et al. Magnetic resonance with diffusion-weighted imaging improves assessment of focal liver lesions in patients with potentially resectable pancreatic cancer on CT. European Radiology 2018; 28 (08) 3484-3493
  • 166 Kim HJ. et al. Incremental Role of Pancreatic Magnetic Resonance Imaging after Staging Computed Tomography to Evaluate Patients with Pancreatic Ductal Adenocarcinoma. Cancer Res Treat 2019; 51 (01) 24-33
  • 167 Kim HW. et al. Adjunctive role of preoperative liver magnetic resonance imaging for potentially resectable pancreatic cancer. Surgery (United States) 2017; 161 (06) 1579-1587
  • 168 Wang L. et al. Positron emission tomography modalities prevent futile radical resection of pancreatic cancer: A meta-analysis. International Journal of Surgery 2017; 46: 119-125
  • 169 Ghaneh P. et al. PET-PANC: multicentre prospective diagnostic accuracy and health economic analysis study of the impact of combined modality 18fluorine-2-fluoro-2-deoxy-d-glucose positron emission tomography with computed tomography scanning in the diagnosis and management of pancreatic cancer. Health technology assessment (Winchester, England) 2018; 22 (07) 1-114
  • 170 Chew C, O’Dwyer PJ. The value of liver magnetic resonance imaging in patients with findings of resectable pancreatic cancer on computed tomography. Singapore Med J 2016; 57 (06) 334-338
  • 171 Jeon SK. et al. Magnetic resonance with diffusion-weighted imaging improves assessment of focal liver lesions in patients with potentially resectable pancreatic cancer on CT. Eur Radiol 2018; 28 (08) 3484-3493
  • 172 Kim HW. et al. Adjunctive role of preoperative liver magnetic resonance imaging for potentially resectable pancreatic cancer. Surgery 2017; 161 (06) 1579-1587
  • 173 Wang L. et al. Positron emission tomography modalities prevent futile radical resection of pancreatic cancer: A meta-analysis. International journal of surgery (London, England) 2017; 46: 119-125
  • 174 Yoneyama T. et al. Staging accuracy of pancreatic cancer: comparison between non-contrast-enhanced and contrast-enhanced PET/CT. European Journal of Radiology 2014; 83 (10) 1734-1739
  • 175 Santhosh S. et al. Fluorodeoxyglucose-positron emission tomography/computed tomography performs better than contrast-enhanced computed tomography for metastasis evaluation in the initial staging of pancreatic adenocarcinoma. Annals of Nuclear Medicine 2017; 31 (08) 575-581
  • 176 Rijkers AP. et al. Usefulness of F-18-fluorodeoxyglucose positron emission tomography to confirm suspected pancreatic cancer: A meta-analysis. European Journal of Surgical Oncology 2014; 40 (07) 794-804
  • 177 Kim MJ. et al. The value of positron emission tomography/computed tomography for evaluating metastatic disease in patients with pancreatic cancer. Pancreas 2012; 41 (06) 897-903
  • 178 Kim HR. et al. Clinical impact of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic cancer: Diagnosing lymph node metastasis and predicting survival. Nuclear Medicine Communications 2018; 39 (07) 691-698
  • 179 Hillner BE. et al. Relationship between cancer type and impact of PET and PET/CT on intended management: Findings of the national oncologic PET registry. Journal of Nuclear Medicine 2008; 49 (12) 1928-1935
  • 180 Einersen P. et al. Positron emission tomography (PET) has limited utility in the staging of pancreatic adenocarcinoma. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract 2014; 18 (08) 1441-1444
  • 181 Buchs NC. et al. Value of contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography/computed tomography in detection and presurgical assessment of pancreatic cancer: A prospective study. Journal of Gastroenterology and Hepatology (Australia) 2011; 26 (04) 657-662
  • 182 Toft J. et al. Imaging modalities in the diagnosis of pancreatic adenocarcinoma: A systematic review and meta-analysis of sensitivity, specificity and diagnostic accuracy. Eur J Radiol 2017; 92: 17-23
  • 183 Schachter PP. et al. The impact of laparoscopy and laparoscopic ultrasonography on the management of pancreatic cancer. Arch Surg 2000; 135 (11) 1303-1307
  • 184 Vollmer CM. et al. Utility of staging laparoscopy in subsets of peripancreatic and biliary malignancies. Ann Surg 2002; 235 (01) 1-7
  • 185 European Study Group on Cystic Tumours of the, P. European evidence-based guidelines on pancreatic cystic neoplasms. Gut 2018; 67: 789-804
  • 186 Gillis A. et al. Does EUS-FNA molecular analysis carry additional value when compared to cytology in the diagnosis of pancreatic cystic neoplasm? A systematic review. HPB (Oxford) 2015; 17 (05) 377-386
  • 187 Ngamruengphong S, Lennon AM. Analysis of Pancreatic Cyst Fluid. Surg Pathol Clin 2016; 9 (04) 677-684
  • 188 Tanaka M. et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 2017; 17 (05) 738-753
  • 189 Marchegiani G. et al. Systematic review, meta-analysis, and a high-volume center experience supporting the new role of mural nodules proposed by the updated 2017 international guidelines on IPMN of the pancreas. Surgery 2018; 163 (06) 1272-1279
  • 190 Han Y. et al. Progression of Pancreatic Branch Duct Intraductal Papillary Mucinous Neoplasm Associates With Cyst Size. Gastroenterology 2018; 154 (03) 576-584
  • 191 Beyer G. et al. Management Algorithm for Cystic Pancreatic Lesions. Visc Med 2018; 34 (03) 197-201
  • 192 Doi R. et al. Surgery versus radiochemotherapy for resectable locally invasive pancreatic cancer: final results of a randomized multi-institutional trial. Surg Today 2008; 38 (11) 1021-1028
  • 193 Ahola R. et al. Effect of centralization on long-term survival after resection of pancreatic ductal adenocarcinoma. Br J Surg 2017; 104 (11) 1532-1538
  • 194 Alsfasser G. et al. Volume-outcome relationship in pancreatic surgery. Br J Surg 2016; 103 (01) 136-143
  • 195 Amini N. et al. Trends in Hospital Volume and Failure to Rescue for Pancreatic Surgery. J Gastrointest Surg 2015; 19 (09) 1581-1592
  • 196 Lidsky ME. et al. Going the Extra Mile: Improved Survival for Pancreatic Cancer Patients Traveling to High-volume Centers. Ann Surg 2017; 266 (02) 333-338
  • 197 Stella M. et al. Impact of surgical experience on management and outcome of pancreatic surgery performed in high- and low-volume centers. Updates Surg 2017; 69 (03) 351-358
  • 198 van der Geest LG. et al. Volume-outcome relationships in pancreatoduodenectomy for cancer. HPB (Oxford) 2016; 18 (04) 317-324
  • 199 Kutlu OC. et al. Open Pancreaticoduodenectomy Case Volume Predicts Outcome of Laparoscopic Approach: A Population-based Analysis. Ann Surg 2018; 267 (03) 552-560
  • 200 Güller U. et al. Lower hospital volume is associated with higher mortality after oesophageal, gastric, pancreatic and rectal cancer resection. Swiss Med Wkly 2017; 147: w14473
  • 201 Gooiker GA. et al. Impact of centralization of pancreatic cancer surgery on resection rates and survival. Br J Surg 2014; 101 (08) 1000-1005
  • 202 Derogar M, Blomberg J, Sadr-Azodi O. Hospital teaching status and volume related to mortality after pancreatic cancer surgery in a national cohort. Br J Surg 2015; 102 (05) 548-557
  • 203 Coupland VH. et al. Resection rate, hospital procedure volume and survival in pancreatic cancer patients in England: Population-based study, 2005-2009. Eur J Surg Oncol 2016; 42 (02) 190-196
  • 204 Brahmbhatt B. et al. Pancreatic Surgery in the Older Population: A Single Institution’s Experience over Two Decades. Curr Gerontol Geriatr Res 2016; 2016: 8052175
  • 205 Bliss LA. et al. Patient selection and the volume effect in pancreatic surgery: unequal benefits?. HPB (Oxford) 2014; 16 (10) 899-906
  • 206 Bateni SB. et al. Drivers of Cost for Pancreatic Surgery: It’s Not About Hospital Volume. Ann Surg Oncol 2018; 25 (13) 3804-3811
  • 207 Balzano G. et al. Overuse of surgery in patients with pancreatic cancer. A nationwide analysis in Italy. HPB (Oxford) 2016; 18 (05) 470-478
  • 208 Birkmeyer JD. et al. Hospital volume and surgical mortality in the United States. N Engl J Med 2002; 346 (15) 1128-1137
  • 209 Ansari D. et al. Pancreaticoduodenectomy-the transition from a low- to a high-volume center. Scandinavian Journal of Gastroenterology 2014; 49 (04) 481-484
  • 210 Healy MA. et al. Pancreatic Resection Results in a Statewide Surgical Collaborative. Annals of Surgical Oncology 2015; 22 (08) 2468-2474
  • 211 Mehta HB. et al. Relative impact of surgeon and hospital volume on operative mortality and complications following pancreatic resection in Medicare patients. Journal of Surgical Research 2016; 204 (02) 326-334
  • 212 Capretti G. et al. Management and Outcomes of Pancreatic Resections Performed in High-Volume Referral and Low-Volume Community Hospitals Lead by Surgeons Who Shared the Same Mentor: The Importance of Training. Digestive surgery 2018; 35 (01) 42-48
  • 213 Nimptsch U, Mansky T. Hospital volume and mortality for 25 types of inpatient treatment in German hospitals: Observational study using complete national data from 2009 to 2014. BMJ Open 2017; 7 (09) e016184
  • 214 Krautz C. et al. Effect of Hospital Volume on In-hospital Morbidity and Mortality Following Pancreatic Surgery in Germany. Annals of surgery 2018; 267 (03) 411-417
  • 215 Mamidanna R. et al. Surgeon volume and cancer esophagectomy, gastrectomy, and pancreatectomy: A populatio n-based study in England. Annals of surgery 2016; 263 (04) 727-732
  • 216 Miura F. et al. Validation of the board certification system for expert surgeons (hepato-biliary-pancreatic field) using the data of the National Clinical Database of Japan: part 2 – Pancreatoduodenectomy. Journal of Hepato-Biliary-Pancreatic Sciences 2016; 23 (06) 353-363
  • 217 van der Geest LG. et al. Elderly Patients Strongly Benefit from Centralization of Pancreatic Cancer Surgery: A Population-Based Study. Ann Surg Oncol 2016; 23 (06) 2002-2009
  • 218 Schwarz RE. Technical considerations to maintain a low frequency of postoperative biliary stent-associated infections. J Hepatobiliary Pancreat Surg 2002; 9 (01) 93-97
  • 219 Gerke H. et al. Complications of pancreaticoduodenectomy after neoadjuvant chemoradiation in patients with and without preoperative biliary drainage. Dig Liver Dis 2004; 36 (06) 412-418
  • 220 Jagannath P. et al. Effect of preoperative biliary stenting on immediate outcome after pancreaticoduodenectomy. Br J Surg 2005; 92 (03) 356-361
  • 221 Martignoni ME. et al. Effect of preoperative biliary drainage on surgical outcome after pancreatoduodenectomy. Am J Surg 2001; 181 (01) 52-59
  • 222 Sohn TA. et al. Do preoperative biliary stents increase postpancreaticoduodenectomy complications?. J Gastrointest Surg 2000; 4 (03) 258-267
  • 223 van der Gaag NA. et al. Preoperative biliary drainage for cancer of the head of the pancreas. N Engl J Med 2010; 362 (02) 129-137
  • 224 Barabino M. et al. Is there still a role for laparoscopy combined with laparoscopic ultrasonography in the staging of pancreatic cancer?. Surg Endosc 2011; 25 (01) 160-165
  • 225 Contreras CM. et al. Staging laparoscopy enhances the detection of occult metastases in patients with pancreatic adenocarcinoma. J Surg Oncol 2009; 100 (08) 663-669
  • 226 Doucas H. et al. Assessment of pancreatic malignancy with laparoscopy and intraoperative ultrasound. Surg Endosc 2007; 21 (07) 1147-1152
  • 227 Enestvedt CK. et al. Diagnostic laparoscopy for patients with potentially resectable pancreatic adenocarcinoma: is it cost-effective in the current era?. J Gastrointest Surg 2008; 12 (07) 1177-1184
  • 228 Hariharan D. et al. The role of laparoscopy and laparoscopic ultrasound in the preoperative staging of pancreatico-biliary cancers--A meta-analysis. Eur J Surg Oncol 2010; 36 (10) 941-948
  • 229 Mayo SC. et al. Evolving preoperative evaluation of patients with pancreatic cancer: does laparoscopy have a role in the current era?. J Am Coll Surg 2009; 208 (01) 87-95
  • 230 Muntean V. et al. Staging laparoscopy in digestive cancers. J Gastrointestin Liver Dis 2009; 18 (04) 461-467
  • 231 Satoi S. et al. Selective use of staging laparoscopy based on carbohydrate antigen 19-9 level and tumor size in patients with radiographically defined potentially or borderline resectable pancreatic cancer. Pancreas 2011; 40 (03) 426-432
  • 232 Shah D. et al. Preoperative prediction of complete resection in pancreatic cancer. J Surg Res 2008; 147 (02) 216-220
  • 233 White R. et al. Current utility of staging laparoscopy for pancreatic and peripancreatic neoplasms. J Am Coll Surg 2008; 206 (03) 445-450
  • 234 Kelly KJ. et al. Prognostic impact of RT-PCR-based detection of peritoneal micrometastases in patients with pancreatic cancer undergoing curative resection. Ann Surg Oncol 2009; 16 (12) 3333-3339
  • 235 Yamada S. et al. Clinical implications of peritoneal cytology in potentially resectable pancreatic cancer: positive peritoneal cytology may not confer an adverse prognosis. Ann Surg 2007; 246 (02) 254-258
  • 236 Wagner M. et al. Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br J Surg 2004; 91 (05) 586-594
  • 237 Fusai G. et al. Outcome of R1 resection in patients undergoing pancreatico-duodenectomy for pancreatic cancer. Eur J Surg Oncol 2008; 34 (12) 1309-1315
  • 238 Gaedcke J. et al. The mesopancreas is the primary site for R1 resection in pancreatic head cancer: relevance for clinical trials. Langenbecks Arch Surg 2010; 395 (04) 451-458
  • 239 Hartwig W. et al. Pancreatic cancer surgery in the new millennium: better prediction of outcome. Ann Surg 2011; 254 (02) 311-319
  • 240 Esposito I. et al. Most pancreatic cancer resections are R1 resections. Ann Surg Oncol 2008; 15 (06) 1651-1660
  • 241 Raut CP. et al. Impact of resection status on pattern of failure and survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Ann Surg 2007; 246 (01) 52-60
  • 242 Chang DK. et al. Margin Clearance and Outcome in Resected Pancreatic Cancer. Journal of Clinical Oncology 2009; 27 (17) 2855-2862
  • 243 Campbell F. et al. Classification of R1 resections for pancreatic cancer: the prognostic relevance of tumour involvement within 1 mm of a resection margin. Histopathology 2009; 55 (03) 277-283
  • 244 Jamieson NB. et al. Positive mobilization margins alone do not influence survival following pancreatico-duodenectomy for pancreatic ductal adenocarcinoma. Ann Surg 2010; 251 (06) 1003-1010
  • 245 Diener Markus K. et al. Pylorus-preserving pancreaticoduodenectomy (pp Whipple) versus pancreaticoduodenectomy (classic Whipple) for surgical treatment of periampullary and pancreatic carcinoma. Cochrane Database of Systematic Reviews 2011; DOI: 10.1002/14651858.CD006053.pub4.
  • 246 Kawai M. et al. Pylorus ring resection reduces delayed gastric emptying in patients undergoing pancreatoduodenectomy: a prospective, randomized, controlled trial of pylorus-resecting versus pylorus-preserving pancreatoduodenectomy. Annals of surgery 2011; 253 (03) 495-501
  • 247 Verbeke CS. Resection margins and R1 rates in pancreatic cancer--are we there yet?. Histopathology 2008; 52 (07) 787-796
  • 248 Wittekind C. et al. A uniform residual tumor (R) classification: integration of the R classification and the circumferential margin status. Cancer 2009; 115 (15) 3483-3488
  • 249 Gajda M, Kenig J. Treatment outcomes of pancreatic cancer in the elderly – literature review. Folia medica Cracoviensia 2018; 58 (03) 49-66
  • 250 Kim SY. et al. The outcomes of pancreaticoduodenectomy in patients aged 80 or older: a systematic review and meta-analysis. HPB (Oxford) 2017; 19 (06) 475-482
  • 251 Sukharamwala P. et al. Advanced age is a risk factor for post-operative complications and mortality after a pancreaticoduodenectomy: a meta-analysis and systematic review. HPB (Oxford) 2012; 14 (10) 649-657
  • 252 van der Geest LG. et al. Pancreatic cancer surgery in elderly patients: Balancing between short-term harm and long-term benefit. A population-based study in the Netherlands. Acta Oncol 2016; 55 (03) 278-285
  • 253 Sho M. et al. Prognosis after surgical treatment for pancreatic cancer in patients aged 80 years or older: a multicenter study. J Hepatobiliary Pancreat Sci 2016; 23 (03) 188-197
  • 254 Shirai Y. et al. Assessment of Surgical Outcome After Pancreatic Resection in Extremely Elderly Patients. Anticancer Res 2016; 36 (04) 2011-2017
  • 255 Sahakyan MA. et al. Perioperative outcomes and survival in elderly patients undergoing laparoscopic distal pancreatectomy. J Hepatobiliary Pancreat Sci 2017; 24 (01) 42-48
  • 256 Renz BW. et al. Pancreaticoduodenectomy for adenocarcinoma of the pancreatic head is justified in elderly patients: A Retrospective Cohort Study. Int J Surg 2016; 28: 118-125
  • 257 Miyazaki Y. et al. Age does not affect complications and overall survival rate after pancreaticoduodenectomy: Single-center experience and systematic review of literature. Biosci Trends 2016; 10 (04) 300-306
  • 258 Hsu CC. et al. Early mortality risk score: identification of poor outcomes following upfront surgery for resectable pancreatic cancer. J Gastrointest Surg 2012; 16 (04) 753-761
  • 259 He W. et al. Underuse of surgical resection among elderly patients with early-stage pancreatic cancer. Surgery 2015; 158 (05) 1226-1234
  • 260 Ansari D. et al. Safety of pancreatic resection in the elderly: a retrospective analysis of 556 patients. Ann Gastroenterol 2016; 29 (02) 221-225
  • 261 Addeo P. et al. Pancreatic fistula after a pancreaticoduodenectomy for ductal adenocarcinoma and its association with morbidity: a multicentre study of the French Surgical Association. HPB (Oxford) 2014; 16 (01) 46-55
  • 262 Lyu HG. et al. Risk Factors of Reoperation After Pancreatic Resection. Dig Dis Sci 2017; 62 (06) 1666-1675
  • 263 Turrini O. et al. Pancreatectomy for adenocarcinoma in elderly patients: Postoperative outcomes and long term results: A study of the French Surgical Association. European Journal of Surgical Oncology 2013; 39 (02) 171-178
  • 264 Tas F. et al. Performance status of patients is the major prognostic factor at all stages of pancreatic cancer. Int J Clin Oncol 2013; 18 (05) 839-846
  • 265 Kleeff J. et al. The impact of diabetes mellitus on survival following resection and adjuvant chemotherapy for pancreatic cancer. Br J Cancer 2016; 115 (07) 887-894
  • 266 Feyko J. et al. Pancreatectomy in Patients with Impaired Renal Function: How Risky Is It?. Am Surg 2016; 82 (01) 16-21
  • 267 Isaji S. et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 2018; 18 (01) 2-11
  • 268 Khorana AA. et al. Potentially Curable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2016; 34 (21) 2541-2556
  • 269 Katz MHG, Crane CH, Varadhachary G. Management of Borderline Resectable Pancreatic Cancer. Seminars in Radiation Oncology 2014; 24 (02) 105-112
  • 270 Allen PJ. et al. Multi-institutional Validation Study of the American Joint Commission on Cancer (8th Edition) Changes for T and N Staging in Patients With Pancreatic Adenocarcinoma. Ann Surg 2017; 265 (01) 185-191
  • 271 National Comprehensive Cancer, N. Pancreatic Adenocarcinoma, Version 1.2020. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines¸). Fort Washington: NCCN; 2020
  • 272 Ferrone CR. et al. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol 2006; 24 (18) 2897-2902
  • 273 Barton JG. et al. Predictive and prognostic value of CA 19-9 in resected pancreatic adenocarcinoma. J Gastrointest Surg 2009; 13 (11) 2050-2058
  • 274 Hartwig W. et al. CA19-9 in potentially resectable pancreatic cancer: Perspective to adjust surgical and perioperative therapy. Annals of Surgical Oncology 2013; 20 (07) 2188-2196
  • 275 Bergquist JR. et al. Carbohydrate Antigen 19-9 Elevation in Anatomically Resectable, Early Stage Pancreatic Cancer Is Independently Associated with Decreased Overall Survival and an Indication for Neoadjuvant Therapy: A National Cancer Database Study. Journal of the American College of Surgeons 2016; 223 (01) 52-65
  • 276 Michelakos T. et al. Predictors of Resectability and Survival in Patients With Borderline and Locally Advanced Pancreatic Cancer who Underwent Neoadjuvant Treatment With FOLFIRINOX. Annals of surgery 2019; 269 (04) 733-740
  • 277 Reni M. et al. Selecting patients for resection after primary chemotherapy for non-metastatic pancreatic adenocarcinoma. Annals of Oncology 2017; 28 (11) 2786-2792
  • 278 Takaori K. et al. International Association of Pancreatology (IAP)/European Pancreatic Club (EPC) consensus review of guidelines for the treatment of pancreatic cancer. Pancreatology 2016; 16 (01) 14-27
  • 279 Al-Hawary MM. et al. Pancreatic ductal adenocarcinoma radiology reporting template: Consensus statement of the society of abdominal radiology and the american pancreatic association. Radiology 2014; 270 (01) 248-260
  • 280 Persigehl T. et al. Structured Reporting of Solid and Cystic Pancreatic Lesions in CT and MRI: Consensus-Based Structured Report Templates of the German Society of Radiology (DRG). Rofo 2020; 192 (07) 641-656
  • 281 Wittel UA. et al. Consensus in determining the resectability of locally progressed pancreatic ductal adenocarcinoma – results of the Conko-007 multicenter trial. BMC Cancer 2019; 19 (01) 979
  • 282 Agalianos C. et al. Positive para-aortic lymph nodes following pancreatectomy for pancreatic cancer. Systematic review and meta-analysis of impact on short term survival and association with clinicopathologic features. HPB 2016; 18 (08) 633-641
  • 283 Cao F. et al. Prognostic significance of positive peritoneal cytology in resectable pancreatic cancer: A systemic review and metaanalysis. Oncotarget 2017; 8 (09) 15004-15013
  • 284 Gebauer F, Damanakis AI, Bruns C. Oligometastasis in pancreatic cancer: Current state of knowledge and spectrum of local therapy. Chirurg 2018; 89 (07) 510-515
  • 285 Michalski CW. et al. Resection of primary pancreatic cancer and liver metastasis: a systematic review. Dig Surg 2008; 25 (06) 473-480
  • 286 Crippa S. et al. Is there a role for surgical resection in patients with pancreatic cancer with liver metastases responding to chemotherapy?. European Journal of Surgical Oncology 2016; 42 (10) 1533-1539
  • 287 Hempel S. et al. Para-aortic lymph node metastases in pancreatic cancer should not be considered a watershed for curative resection. Scientific reports 2017; 7 (01) 7688
  • 288 Kim Y. et al. Improved survival after palliative resection of unsuspected stage IV pancreatic ductal adenocarcinoma. HPB 2016; 18 (04) 325-331
  • 289 Klaiber U. et al. Prognostic Factors of Survival After Neoadjuvant Treatment and Resection for Initially Unresectable Pancreatic Cancer. Annals of surgery 2019; DOI: 10.1097/SLA.0000000000003270.
  • 290 Lowder CY. et al. Clinical Implications of Extensive Lymph Node Metastases for Resected Pancreatic Cancer. Annals of Surgical Oncology 2018; 25 (13) 4004-4011
  • 291 Philips P. et al. The role of hepatic artery lymph node in pancreatic adenocarcinoma: prognostic factor or a selection criterion for surgery. HPB: the official journal of the International Hepato Pancreato Biliary Association 2014; 16 (12) 1051-1055
  • 292 Shi HJ, Jin C, Fu DL. Preoperative evaluation of pancreatic ductal adenocarcinoma with synchronous liver metastasis: Diagnosis and assessment of unresectability. World Journal of Gastroenterology 2016; 22 (45) 10024-10037
  • 293 Tachezy M. et al. Synchronous resections of hepatic oligometastatic pancreatic cancer: Disputing a principle in a time of safe pancreatic operations in a retrospective multicenter analysis. Surgery (United States) 2016; 160 (01) 136-144
  • 294 Gleisner AL. et al. Is resection of periampullary or pancreatic adenocarcinoma with synchronous hepatic metastasis justified?. Cancer 2007; 110 (11) 2484-2492
  • 295 Shrikhande SV. et al. Pancreatic resection for M1 pancreatic ductal adenocarcinoma. Ann Surg Oncol 2007; 14 (01) 118-127
  • 296 Takada T. et al. Simultaneous hepatic resection with pancreato-duodenectomy for metastatic pancreatic head carcinoma: does it improve survival?. Hepatogastroenterology 1997; 44 (14) 567-573
  • 297 Massucco P. et al. Prognostic significance of lymph node metastases in pancreatic head cancer treated with extended lymphadenectomy: not just a matter of numbers. Ann Surg Oncol 2009; 16 (12) 3323-3332
  • 298 Doi R. et al. Prognostic implication of para-aortic lymph node metastasis in resectable pancreatic cancer. World J Surg 2007; 31 (01) 147-154
  • 299 Kanda M. et al. Pattern of lymph node metastasis spread in pancreatic cancer. Pancreas 2011; 40 (06) 951-955
  • 300 Cordera F. et al. Significance of common hepatic artery lymph node metastases during pancreaticoduodenectomy for pancreatic head adenocarcinoma. Ann Surg Oncol 2007; 14 (08) 2330-2336
  • 301 Yamada S. et al. Pancreatic cancer with paraaortic lymph node metastasis: a contraindication for radical surgery?. Pancreas 2009; 38 (01) e13-e17
  • 302 Tao L. et al. Surgical resection of a primary tumor improves survival of metastatic pancreatic cancer: A population-based study. Cancer Management and Research 2017; 9: 471-479
  • 303 Liu X. et al. Predictors of distant metastasis on exploration in patients with potentially resectable pancreatic cancer. BMC Gastroenterology 2018; 18 (01) 168
  • 304 Murakami Y. et al. Prognostic impact of para-aortic lymph node metastasis in pancreatic ductal adenocarcinoma. World J Surg 2010; 34 (08) 1900-1907
  • 305 Hackert T. et al. Radical surgery of oligometastatic pancreatic cancer. European Journal of Surgical Oncology 2017; 43 (02) 358-363
  • 306 Yang J. et al. Patients with hepatic oligometastatic pancreatic body/tail ductal adenocarcinoma may benefit from synchronous resection. HPB (Oxford) 2020; 22 (01) 91-101
  • 307 Damanakis AI. et al. Proposal for a definition of “Oligometastatic disease in pancreatic cancer”. BMC Cancer 2019; 19 (01) 1261
  • 308 Kandel P. et al. Survival of Patients with Oligometastatic Pancreatic Ductal Adenocarcinoma Treated with Combined Modality Treatment Including Surgical Resection: A Pilot Study. Journal of Pancreatic Cancer 2018; 4 (01) 88-94
  • 309 Antoniou E. et al. Is resection of pancreatic adenocarcinoma with synchronous hepatic metastasis justified? A review of current literature. ANZ journal of surgery 2016; 86 (12) 973-977
  • 310 Klaiber U. et al. Prognostic Factors of Survival After Neoadjuvant Treatment and Resection for Initially Unresectable Pancreatic Cancer. Ann Surg 2019; DOI: 10.1097/SLA.0000000000003270.
  • 311 Oweira H. et al. Prognostic value of site-specific metastases in pancreatic adenocarcinoma: A Surveillance Epidemiology and End Results database analysis. World J Gastroenterol 2017; 23 (10) 1872-1880
  • 312 Lovecek M. et al. Different clinical presentations of metachronous pulmonary metastases after resection of pancreatic ductal adenocarcinoma: Retrospective study and review of the literature. World Journal of Gastroenterology 2017; 23 (35) 6420-6428
  • 313 Liu K-H. et al. Lung Metastases in Patients with Stage IV Pancreatic Cancer: Prevalence, Risk Factors, and Survival Impact. Journal of clinical medicine 2019; 8 (09) 1402
  • 314 Ilmer M. et al. Oligometastatic pulmonary metastasis in pancreatic cancer patients: Safety and outcome of resection. Surgical Oncology 2019; 31: 16-21
  • 315 Liu Q. et al. Surgery for synchronous and metachronous single-organ metastasis of pancreatic cancer: a SEER database analysis and systematic literature review. Sci Rep 2020; 10 (01) 4444
  • 316 Sakaguchi T. et al. Surgical treatment of metastatic pancreatic ductal adenocarcinoma: A review of current literature. Pancreatology 2019; 19 (05) 672-680
  • 317 Schwarz M. et al. Efficacy of oral ofloxacin for single-dose perioperative prophylaxis in general surgery--a controlled randomized clinical study. Langenbecks Arch Surg 2001; 386 (06) 397-401
  • 318 Targarona EM. et al. Single-dose antibiotic prophylaxis in patients at high risk for infection in biliary surgery: a prospective and randomized study comparing cefonicid with mezlocillin. Surgery 1990; 107 (03) 327-334
  • 319 Kujath P. et al. Current perioperative antibiotic prophylaxis. Chirurg 2006; 77 (06) 490-492, 498
  • 320 Barnett SP. et al. Octreotide does not prevent postoperative pancreatic fistula or mortality following Pancreaticoduodenectomy. Am Surg 2004; 70 (03) 222-226
  • 321 Friess H, Buchler MW. Efficacy of somatostatin and its analogues in pancreatic surgery and pancreatic disorders. Digestion 1996; 57 (Suppl. 01) 97-102
  • 322 Gouillat C. et al. Randomized controlled multicentre trial of somatostatin infusion after pancreaticoduodenectomy. Br J Surg 2001; 88 (11) 1456-1462
  • 323 Hesse UJ. et al. Prospectively randomized trial using perioperative low-dose octreotide to prevent organ-related and general complications after pancreatic surgery and pancreatico-jejunostomy. World J Surg 2005; 29 (10) 1325-1328
  • 324 Montorsi M. et al. Efficacy of octreotide in the prevention of pancreatic fistula after elective pancreatic resections: a prospective, controlled, randomized clinical trial. Surgery 1995; 117 (01) 26-31
  • 325 Pederzoli P. et al. Efficacy of octreotide in the prevention of complications of elective pancreatic surgery. Italian Study Group. Br J Surg 1994; 81 (02) 265-269
  • 326 Yeo CJ. et al. Does prophylactic octreotide decrease the rates of pancreatic fistula and other complications after pancreaticoduodenectomy? Results of a prospective randomized placebo-controlled trial. Ann Surg 2000; 232 (03) 419-429
  • 327 Connor S. et al. Meta-analysis of the value of somatostatin and its analogues in reducing complications associated with pancreatic surgery. Br J Surg 2005; 92 (09) 1059-1067
  • 328 Warshaw AL. Implications of peritoneal cytology for staging of early pancreatic cancer. Am J Surg 1991; 161 (01) 26-29
  • 329 Heeckt P. et al. [Free intraperitoneal tumors cells in pancreatic cancer – significance for clinical course and therapy]. Chirurg 1992; 63 (07) 563-567
  • 330 Kinoshita T. et al. [Effectiveness of intraoperative cytological examination of peritoneal washings for patients with pancreatic cancer]. Nihon Geka Gakkai Zasshi 1992; 93 (11) 1410-1415
  • 331 Makary MA. et al. Implications of peritoneal cytology for pancreatic cancer management. Arch Surg 1998; 133 (04) 361-365
  • 332 Konishi M. et al. Prognostic value of cytologic examination of peritoneal washings in pancreatic cancer. Arch Surg 2002; 137 (04) 475-480
  • 333 Nakao A. et al. Peritoneal washings cytology combined with immunocytochemical staining in pancreatic cancer. Hepatogastroenterology 1999; 46 (29) 2974-2977
  • 334 Yachida S. et al. Implications of peritoneal washing cytology in patients with potentially resectable pancreatic cancer. Br J Surg 2002; 89 (05) 573-578
  • 335 Bachellier P. et al. Is pancreaticoduodenectomy with mesentericoportal venous resection safe and worthwhile?. Am J Surg 2001; 182 (02) 120-129
  • 336 Bassi C. et al. Influence of surgical resection and post-operative complications on survival following adjuvant treatment for pancreatic cancer in the ESPAC-1 randomized controlled trial. Dig Surg 2005; 22 (05) 353-363
  • 337 Capussotti L. et al. Extended lymphadenectomy and vein resection for pancreatic head cancer: outcomes and implications for therapy. Arch Surg 2003; 138 (12) 1316-1322
  • 338 Farnell MB. et al. A prospective randomized trial comparing standard pancreatoduodenectomy with pancreatoduodenectomy with extended lymphadenectomy in resectable pancreatic head adenocarcinoma. Surgery 2005; 138 (04) 618-628
  • 339 Fernandez-del Castillo C, Rattner DW, Warshaw AL. Standards for pancreatic resection in the 1990s. Arch Surg 1995; 130 (03) 295-299
  • 340 Hartel M. et al. Benefit of venous resection for ductal adenocarcinoma of the pancreatic head. Eur J Surg 2002; 168 (12) 707-712
  • 341 Ishikawa O. et al. Practical grouping of positive lymph nodes in pancreatic head cancer treated by an extended pancreatectomy. Surgery 1997; 121 (03) 244-249
  • 342 Jurowich C. et al. Portal vein resection in the framework of surgical therapy of pancreatic head carcinoma: clarification of indication by improved preoperative diagnostic procedures?. Chirurg 2000; 71 (07) 803-807
  • 343 Kawarada Y. et al. Modified standard pancreaticoduodenectomy for the treatment of pancreatic head cancer. Digestion 1999; 60 (Suppl. 01) 120-125
  • 344 Klempnauer J. et al. Extended resections of ductal pancreatic cancer--impact on operative risk and prognosis. Oncology 1996; 53 (01) 47-53
  • 345 Klinkenbijl JH. et al. The advantages of pylorus-preserving pancreatoduodenectomy in malignant disease of the pancreas and periampullary region. Ann Surg 1992; 216 (02) 142-145
  • 346 Kremer B. et al. Surgical possibilities for pancreatic cancer: extended resection. Ann Oncol 1999; 10 (Suppl. 04) 252-256
  • 347 Lin PW. et al. Pancreaticoduodenectomy for pancreatic head cancer: PPPD versus Whipple procedure. Hepatogastroenterology 2005; 52 (65) 1601-1604
  • 348 Lygidakis NJ. et al. Mono-bloc total spleno-pancreaticoduodenectomy for pancreatic head carcinoma with portal-mesenteric venous invasion. A prospective randomized study. Hepatogastroenterology 2004; 51 (56) 427-433
  • 349 Mu DQ, Peng SY, Wang GF. Extended radical operation of pancreatic head cancer: appraisal of its clinical significance. World J Gastroenterol 2005; 11 (16) 2467-2471
  • 350 Nakao A. et al. Extended radical resection versus standard resection for pancreatic cancer: the rationale for extended radical resection. Pancreas 2004; 28 (03) 289-292
  • 351 Pedrazzoli S. et al. Standard versus extended lymphadenectomy associated with pancreatoduodenectomy in the surgical treatment of adenocarcinoma of the head of the pancreas: a multicenter, prospective, randomized study. Lymphadenectomy Study Group. Ann Surg 1998; 228 (04) 508-517
  • 352 Roher HD, Heise JW, Goretzki PE. Stomach saving duodenopancreatectomy. Indications and contraindications. The most important surgical steps. Zentralbl Chir 2000; 125 (12) 961-965
  • 353 Schafer M, Mullhaupt B, Clavien PA. Evidence-based pancreatic head resection for pancreatic cancer and chronic pancreatitis. Ann Surg 2002; 236 (02) 137-148
  • 354 Takada T. et al. Results of a pylorus-preserving pancreatoduodenectomy for pancreatic cancer: a comparison with results of the Whipple procedure. Hepatogastroenterology 1997; 44 (18) 1536-1540
  • 355 Tran KT. et al. Pylorus preserving pancreaticoduodenectomy versus standard Whipple procedure: a prospective, randomized, multicenter analysis of 170 patients with pancreatic and periampullary tumors. Ann Surg 2004; 240 (05) 738-745
  • 356 Tseng JF. et al. Pancreaticoduodenectomy with vascular resection: margin status and survival duration. J Gastrointest Surg 2004; 8 (08) 935-949
  • 357 Zerbi A. et al. Comparison between pylorus-preserving and Whipple pancreatoduodenectomy. Br J Surg 1995; 82 (07) 975-979
  • 358 Diener MK. et al. A systematic review and meta-analysis of pylorus-preserving versus classical pancreaticoduodenectomy for surgical treatment of periampullary and pancreatic carcinoma. Ann Surg 2007; 245 (02) 187-200
  • 359 Christein JD. et al. Distal pancreatectomy for resectable adenocarcinoma of the body and tail of the pancreas. J Gastrointest Surg 2005; 9 (07) 922-927
  • 360 Gebhardt C, Meyer W, Jurowich C. Is resection of left-sided ductal pancreatic carcinoma of value?. Zentralbl Chir 2000; 125 (12) 966-969
  • 361 Kayahara M. et al. Distal pancreatectomy--does it have a role for pancreatic body and tail cancer. Hepatogastroenterology 1998; 45 (21) 827-832
  • 362 Mayumi T. et al. Distal pancreatectomy with en bloc resection of the celiac artery for carcinoma of the body and tail of the pancreas. Int J Pancreatol 1997; 22 (01) 15-21
  • 363 Shimada K. et al. Prognostic factors after distal pancreatectomy with extended lymphadenectomy for invasive pancreatic adenocarcinoma of the body and tail. Surgery 2006; 139 (03) 288-295
  • 364 Shoup M. et al. Is extended resection for adenocarcinoma of the body or tail of the pancreas justified?. J Gastrointest Surg 2003; 7 (08) 946-952
  • 365 Kondo S. et al. Results of radical distal pancreatectomy with en bloc resection of the celiac artery for locally advanced cancer of the pancreatic body. Langenbecks Arch Surg 2003; 388 (02) 101-106
  • 366 Garcea G. et al. Tumour characteristics predictive of survival following resection for ductal adenocarcinoma of the head of pancreas. Eur J Surg Oncol 2007; 33 (07) 892-897
  • 367 Pai RK. et al. Pattern of lymph node involvement and prognosis in pancreatic adenocarcinoma: direct lymph node invasion has similar survival to node-negative disease. Am J Surg Pathol 2011; 35 (02) 228-234
  • 368 Sahin TT. et al. Prognostic Implications of Lymph Node Metastases in Carcinoma of the Body and Tail of the Pancreas. Pancreas 2011; DOI: 10.1097/MPA.0b013e3182207893.
  • 369 Bhatti I. et al. Lymph node ratio versus number of affected lymph nodes as predictors of survival for resected pancreatic adenocarcinoma. World J Surg 2010; 34 (04) 768-775
  • 370 Hellan M. et al. The impact of lymph node number on survival in patients with lymph node-negative pancreatic cancer. Pancreas 2008; 37 (01) 19-24
  • 371 House MG. et al. Prognostic significance of pathologic nodal status in patients with resected pancreatic cancer. J Gastrointest Surg 2007; 11 (11) 1549-1555
  • 372 Konstantinidis IT. et al. Does the mechanism of lymph node invasion affect survival in patients with pancreatic ductal adenocarcinoma?. J Gastrointest Surg 2010; 14 (02) 261-267
  • 373 La Torre M. et al. Role of the Lymph node ratio in pancreatic ductal adenocarcinoma. Impact on patient stratification and prognosis. Journal of Surgical Oncology 2011; DOI: 10.1002/jso.22013.
  • 374 Murakami Y. et al. Number of metastatic lymph nodes, but not lymph node ratio, is an independent prognostic factor after resection of pancreatic carcinoma. J Am Coll Surg 2010; 211 (02) 196-204
  • 375 Pawlik TM. et al. Prognostic relevance of lymph node ratio following pancreaticoduodenectomy for pancreatic cancer. Surgery 2007; 141 (05) 610-618
  • 376 Prenzel KL. et al. Lymph node size and metastatic infiltration in adenocarcinoma of the pancreatic head. Eur J Surg Oncol 2010; 36 (10) 993-996
  • 377 Riediger H. et al. The lymph node ratio is the strongest prognostic factor after resection of pancreatic cancer. J Gastrointest Surg 2009; 13 (07) 1337-1344
  • 378 Showalter TN. et al. The Influence of Total Nodes Examined, Number of Positive Nodes, and Lymph Node Ratio on Survival after Surgical Resection and Adjuvant Chemoradiation for Pancreatic Cancer: A Secondary Analysis of RTOG 9704. Int J Radiat Oncol Biol Phys 2010; DOI: 10.1016/j.ijrobp.2010.07.1993.
  • 379 Slidell MB. et al. Impact of total lymph node count and lymph node ratio on staging and survival after pancreatectomy for pancreatic adenocarcinoma: a large, population-based analysis. Ann Surg Oncol 2008; 15 (01) 165-174
  • 380 Yeo CJ. et al. Pancreaticoduodenectomy with or without distal gastrectomy and extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma, part 2: randomized controlled trial evaluating survival, morbidity, and mortality. Ann Surg 2002; 236 (03) 355-366
  • 381 Farnell MB. et al. The role of extended lymphadenectomy for adenocarcinoma of the head of the pancreas: strength of the evidence. J Gastrointest Surg 2008; 12 (04) 651-656
  • 382 Michalski CW. et al. Systematic review and meta-analysis of standard and extended lymphadenectomy in pancreaticoduodenectomy for pancreatic cancer. Br J Surg 2007; 94 (03) 265-273
  • 383 Chen S. et al. Robot-assisted laparoscopic versus open middle pancreatectomy: short-term results of a randomized controlled trial. Surgical Endoscopy 2017; 31 (02) 962-971
  • 384 Xourafas D, Ashley SW, Clancy TE. Comparison of Perioperative Outcomes between Open, Laparoscopic, and Robotic Distal Pancreatectomy: an Analysis of 1815 Patients from the ACS-NSQIP Procedure-Targeted Pancreatectomy Database. J Gastrointest Surg 2017; 21 (09) 1442-1452
  • 385 Mirkin KA. et al. Minimally invasive surgical approaches offer earlier time to adjuvant chemotherapy but not improved survival in resected pancreatic cancer. Surg Endosc 2018; 32 (05) 2387-2396
  • 386 Kauffmann EF. et al. A propensity score-matched analysis of robotic versus open pancreatoduodenectomy for pancreatic cancer based on margin status. Surgical Endoscopy 2019; 33 (01) 234-242
  • 387 Boggi U. et al. Robotic-Assisted Pancreatic Resections. World J Surg 2016; 40 (10) 2497-2506
  • 388 Adam MA. et al. Defining a Hospital Volume Threshold for Minimally Invasive Pancreaticoduodenectomy in the United States. JAMA Surg 2017; 152 (04) 336-342
  • 389 Abu Hilal M. et al. Laparoscopic versus open distal pancreatectomy: a clinical and cost-effectiveness study. Surg Endosc 2012; 26 (06) 1670-1674
  • 390 Raoof M. et al. Propensity score-matched comparison of oncological outcomes between laparoscopic and open distal pancreatic resection. The British journal of surgery 2018; 105 (05) 578-586
  • 391 de Rooij T, van Hilst J. et al. Minimally Invasive Versus Open Distal Pancreatectomy (LEOPARD): A Multicenter Patient-blinded Randomized Controlled Trial. Ann Surg 2019; 269 (01) 2-9
  • 392 de Rooij T. et al. Impact of a Nationwide Training Program in Minimally Invasive Distal Pancreatectomy (LAELAPS). Ann Surg 2016; 264 (05) 754-762
  • 393 Klompmaker S. et al. International Validation of Reduced Major Morbidity After Minimally Invasive Distal Pancreatectomy Compared With Open Pancreatectomy. Ann Surg 2019; DOI: 10.1097/SLA.0000000000003659.
  • 394 Plotkin A. et al. Reduced morbidity with minimally invasive distal pancreatectomy for pancreatic adenocarcinoma. HPB: the official journal of the International Hepato Pancreato Biliary Association 2017; 19 (03) 279-285
  • 395 Tran Cao HS. et al. Improved perioperative outcomes with minimally invasive distal pancreatectomy: results from a population-based analysis. JAMA Surgery 2014; 149 (03) 237-243
  • 396 Bauman MD. et al. Laparoscopic distal pancreatectomy for pancreatic cancer is safe and effective. Surgical Endoscopy 2018; 32 (01) 53-61
  • 397 Huang B, Feng L, Zhao J. Systematic review and meta-analysis of robotic versus laparoscopic distal pancreatectomy for benign and malignant pancreatic lesions. Surgical Endoscopy 2016; 30 (09) 4078-4085
  • 398 Zhao W. et al. Safety and efficacy for robot-assisted versus open pancreaticoduodenectomy and distal pancreatectomy: A systematic review and meta-analysis. Surg Oncol 2018; 27 (03) 468-478
  • 399 Lyman WB. et al. Robotic-assisted versus laparoscopic left pancreatectomy at a high-volume, minimally invasive center. Surgical Endoscopy 2018; DOI: 10.1007/s00464-018-6565-6.
  • 400 Kornaropoulos M. et al. Total robotic pancreaticoduodenectomy: a systematic review of the literature. Surgical Endoscopy 2017; 31 (11) 4382-4392
  • 401 McMillan MT. et al. A propensity score-matched analysis of robotic vs open pancreatoduodenectomy on incidence of pancreatic fistula. JAMA Surgery 2017; 152 (04) 327-335
  • 402 Nickel F. et al. Laparoscopic Versus Open Pancreaticoduodenectomy: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann Surg 2020; 271 (01) 54-66
  • 403 Palanivelu C. et al. Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br J Surg 2017; 104 (11) 1443-1450
  • 404 Poves I. et al. Comparison of Perioperative Outcomes Between Laparoscopic and Open Approach for Pancreatoduodenectomy: The PADULAP Randomized Controlled Trial. Ann Surg 2018; 268 (05) 731-739
  • 405 van Hilst J. et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol 2019; 4 (03) 199-207
  • 406 Pędziwiatr M. et al. Minimally invasive versus open pancreatoduodenectomy-systematic review and meta-analysis. Langenbecks Arch Surg 2017; 402 (05) 841-851
  • 407 Nassour I. et al. Robotic-assisted versus laparoscopic pancreaticoduodenectomy: oncological outcomes. Surgical Endoscopy 2018; 32 (06) 2907-2913
  • 408 Schmidt CM. et al. Total pancreatectomy (R0 resection) improves survival over subtotal pancreatectomy in isolated neck margin positive pancreatic adenocarcinoma. Surgery 2007; 142 (04) 572-578
  • 409 Hernandez J. et al. Survival after pancreaticoduodenectomy is not improved by extending resections to achieve negative margins. Ann Surg 2009; 250 (01) 76-80
  • 410 Munding J, Uhl W, Tannapfel A. [R classification and pancreatic ductal adenocarcinoma--R 0 is R 0]. Z Gastroenterol 2011; 49 (10) 1423-1427
  • 411 Brierley JD, Gospodarowicz MK. W. C., UICC: TNM Classification of Malignant Tumors. ed. t. edition. Oxford: 2017
  • 412 Fujita T. et al. Evaluation of the prognostic factors and significance of lymph node status in invasive ductal carcinoma of the body or tail of the pancreas. Pancreas 2010; 39 (01) e48-e54
  • 413 Shimada K. et al. Intrapancreatic nerve invasion as a predictor for recurrence after pancreaticoduodenectomy in patients with invasive ductal carcinoma of the pancreas. Pancreas 2011; 40 (03) 464-468
  • 414 Zacharias T. et al. Impact of lymph node involvement on long-term survival after R0 pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas. J Gastrointest Surg 2007; 11 (03) 350-356
  • 415 Wasif N. et al. Impact of tumor grade on prognosis in pancreatic cancer: Should we include grade in AJCC staging?. Annals of Surgical Oncology 2010; 17 (09) 2312-2320
  • 416 Nagtegaal ID. et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020; 76 (02) 182-188
  • 417 Boggi U. et al. Prognostic implications of tumor invasion or adhesion to peripancreatic vessels in resected pancreatic cancer. Surgery 2009; 146 (05) 869-881
  • 418 Kurahara H. et al. Impact of lymph node micrometastasis in patients with pancreatic head cancer. World J Surg 2007; 31 (03) 483-490
  • 419 Menon KV. et al. Impact of margin status on survival following pancreatoduodenectomy for cancer: the Leeds Pathology Protocol (LEEPP). HPB (Oxford) 2009; 11 (01) 18-24
  • 420 Fatima J. et al. Pancreatoduodenectomy for ductal adenocarcinoma: implications of positive margin on survival. Arch Surg 2010; 145 (02) 167-172
  • 421 Lee SE. et al. Clinical implications of immunohistochemically demonstrated lymph node micrometastasis in resectable pancreatic cancer. J Korean Med Sci 2011; 26 (07) 881-885
  • 422 Mitsunaga S. et al. Detail histologic analysis of nerve plexus invasion in invasive ductal carcinoma of the pancreas and its prognostic impact. Am J Surg Pathol 2007; 31 (11) 1636-1644
  • 423 Kanda M. et al. Invasion of the splenic artery is a crucial prognostic factor in carcinoma of the body and tail of the pancreas. Ann Surg 2010; 251 (03) 483-487
  • 424 Hishinuma S. et al. Patterns of recurrence after curative resection of pancreatic cancer, based on autopsy findings. J Gastrointest Surg 2006; 10 (04) 511-518
  • 425 Oettle H. et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 2007; 297 (03) 267-277
  • 426 Ueno H. et al. A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. Br J Cancer 2009; 101 (06) 908-915
  • 427 Neoptolemos JP. et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004; 350 (12) 1200-1210
  • 428 Stocken DD. et al. Meta-analysis of randomised adjuvant therapy trials for pancreatic cancer. Br J Cancer 2005; 92 (08) 1372-1381
  • 429 Neoptolemos JP. et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA 2010; 304 (10) 1073-1081
  • 430 Yoshitomi H. et al. A randomized phase II trial of adjuvant chemotherapy with uracil/tegafur and gemcitabine versus gemcitabine alone in patients with resected pancreatic cancer. Cancer 2008; 113 (09) 2448-2456
  • 431 Neoptolemos JP. et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. The Lancet 2017; (no pagination) DOI: 10.1016/S0140-6736(16)32409-6.
  • 432 Conroy T. et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. New England Journal of Medicine 2018; 379 (25) 2395-5406
  • 433 Oettle H. et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA: Journal of the American Medical Association 2013; 310 (14) 1473-1481
  • 434 Van Cutsem E. et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. Journal of Clinical Oncology 2009; 27 (13) 2231-2237
  • 435 Sinn M. et al. CONKO-006: A randomised double-blinded phase IIb-study of additive therapy with gemcitabine + sorafenib/placebo in patients with R1 resection of pancreatic cancer – Final results. Eur J Cancer 2020; 138: 172-181
  • 436 Sinn M. et al. LBA18 – Conko-006: a Randomized Double-Blinded Phase Iib-Study of Adjuvant Therapy with Gemcitabine + Sorafenib/Placebo for Patients with R1-Resection of Pancreatic Cancer. Annals of Oncology 2014; 25: v1
  • 437 Tempero MA. et al. APACT: phase III, multicenter, international, open-label, randomized trial of adjuvant nab-paclitaxel plus gemcitabine (nab-P/G) vs gemcitabine (G) for surgically resected pancreatic adenocarcinoma. Journal of Clinical Oncology 2019; 37 (15) 4000-4000
  • 438 Brahmer JR. et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2018; 36 (17) 1714-1768
  • 439 Sinn M. et al. CONKO-005: Adjuvant Chemotherapy With Gemcitabine Plus Erlotinib Versus Gemcitabine Alone in Patients After R0 Resection of Pancreatic Cancer: A Multicenter Randomized Phase III Trial. Journal of Clinical Oncology 2017; 35 (29) 3330-3337
  • 440 Valle JW. et al. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: Ongoing lessons from the ESPAC-3 study. Journal of Clinical Oncology 2014; 32 (06) 504-512
  • 441 Saeed H. et al. Defining the optimal timing of adjuvant therapy for resected pancreatic adenocarcinoma: A statewide cancer registry analysis. Journal of Surgical Oncology 2016; 114 (04) 451-455
  • 442 American Society of Clinical, O. et al. Potentially curable pancreatic cancer: American society of clinical oncology clinical practice guideline update. Journal of Clinical Oncology 2017; 2324-2328 DOI: 10.1200/JCO.2017.72.4948.
  • 443 Sun W. et al. Proposing the lymphatic target volume for elective radiation therapy for pancreatic cancer: a pooled analysis of clinical evidence. Radiat Oncol 2010; 5: 28
  • 444 Kalser MH, Ellenberg SS. Pancreatic cancer. Adjuvant combined radiation and chemotherapy following curative resection. Arch Surg 1985; 120 (08) 899-903
  • 445 Smeenk HG. et al. Long-term survival and metastatic pattern of pancreatic and periampullary cancer after adjuvant chemoradiation or observation: long-term results of EORTC trial 40891. Ann Surg 2007; 246 (05) 734-740
  • 446 Morak MJ. et al. Adjuvant intra-arterial chemotherapy and radiotherapy versus surgery alone in resectable pancreatic and periampullary cancer: a prospective randomized controlled trial. Ann Surg 2008; 248 (06) 1031-1041
  • 447 Neoptolemos JP. et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet 2001; 358: 1576-1585
  • 448 Carter R. et al. Longitudinal quality of life data can provide insights on the impact of adjuvant treatment for pancreatic cancer-Subset analysis of the ESPAC-1 data. Int J Cancer 2009; 124 (12) 2960-2965
  • 449 Klinkenbijl JH. et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann Surg 1999; 230 (06) 776-782
  • 450 Van Laethem JL. et al. Adjuvant gemcitabine alone versus gemcitabine-based chemoradiotherapy after curative resection for pancreatic cancer: a randomized EORTC-40013-22012/FFCD-9203/GERCOR phase II study. J Clin Oncol 2010; 28 (29) 4450-4456
  • 451 Regine WF. et al. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the U.S. Intergroup/RTOG 9704 phase III trial. Ann Surg Oncol 2011; 18 (05) 1319-1326
  • 452 Reni M. et al. Adjuvant PEFG (cisplatin, epirubicin, 5-fluorouracil, gemcitabine) or gemcitabine followed by chemoradiation in pancreatic cancer: A randomized phase II trial. Annals of Surgical Oncology 2012; 19 (07) 2256-2263
  • 453 Yeo CJ. et al. Pancreaticoduodenectomy for pancreatic adenocarcinoma: postoperative adjuvant chemoradiation improves survival. A prospective, single-institution experience. Ann Surg 1997; 225 (05) 621-633
  • 454 Bosset JF. et al. Conventional external irradiation alone as adjuvant treatment in resectable pancreatic cancer: results of a prospective study. Radiother Oncol 1992; 24 (03) 191-194
  • 455 Brunner TB. et al. Definition of elective lymphatic target volume in ductal carcinoma of the pancreatic head based on histopathologic analysis. Int J Radiat Oncol Biol Phys 2005; 62 (04) 1021-1029
  • 456 Abrams RA. et al. Results of the NRG Oncology/RTOG 0848 Adjuvant Chemotherapy Question-Erlotinib+Gemcitabine for Resected Cancer of the Pancreatic Head: A Phase II Randomized Clinical Trial. Am J Clin Oncol 2020; 43 (03) 173-179
  • 457 Goodman KA. et al. Radiation Therapy Oncology Group consensus panel guidelines for the delineation of the clinical target volume in the postoperative treatment of pancreatic head cancer. Int J Radiat Oncol Biol Phys 2012; 83 (03) 901-908
  • 458 Herman JM. et al. Analysis of fluorouracil-based adjuvant chemotherapy and radiation after pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas: results of a large, prospectively collected database at the Johns Hopkins Hospital. J Clin Oncol 2008; 26 (21) 3503-3510
  • 459 Butturini G. et al. Influence of resection margins and treatment on survival in patients with pancreatic cancer: meta-analysis of randomized controlled trials. Arch Surg 2008; 143 (01) 75-83
  • 460 Andriulli A. et al. Neoadjuvant/preoperative gemcitabine for patients with localized pancreatic cancer: a meta-analysis of prospective studies. Ann Surg Oncol 2011; 19 (05) 1644-1662
  • 461 Assifi MM. et al. Neoadjuvant therapy in pancreatic adenocarcinoma: a meta-analysis of phase II trials. Surgery 2011; 150 (03) 466-473
  • 462 Bradley A, Van R. Der Meer, Upfront Surgery versus Neoadjuvant Therapy for Resectable Pancreatic Cancer: Systematic Review and Bayesian Network Meta-analysis. Scientific reports 2019; 9 (01) 4354
  • 463 Gillen S. et al. Preoperative/neoadjuvant therapy in pancreatic cancer: A systematic review and meta-analysis of response and resection percentages. PLoS Medicine 2010; 7 (04) DOI: 10.1371/journal.pmed.1000267.
  • 464 Palmer DH. et al. A randomized phase 2 trial of neoadjuvant chemotherapy in resectable pancreatic cancer: gemcitabine alone versus gemcitabine combined with cisplatin. Ann Surg Oncol 2007; 14 (07) 2088-2096
  • 465 Versteijne E. et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J Clin Oncol 2020; JCO1902274 DOI: 10.1200/JCO.19.02274.
  • 466 Barbier L. et al. Pancreatic head resectable adenocarcinoma: preoperative chemoradiation improves local control but does not affect survival. HPB (Oxford) 2011; 13 (01) 64-69
  • 467 Takahashi S. et al. Borderline resectable pancreatic cancer: rationale for multidisciplinary treatment. J Hepatobiliary Pancreat Sci 2011; 18 (04) 567-574
  • 468 Chun YS. et al. Significance of pathologic response to preoperative therapy in pancreatic cancer. Ann Surg Oncol 2011; 18 (13) 3601-3607
  • 469 Heinrich S. et al. Neoadjuvant chemotherapy generates a significant tumor response in resectable pancreatic cancer without increasing morbidity: results of a prospective phase II trial. Ann Surg 2008; 248 (06) 1014-1022
  • 470 Lutfi W. et al. Perioperative chemotherapy is associated with a survival advantage in early stage adenocarcinoma of the pancreatic head. Surgery (United Kingdom) 2016; 160 (03) 714-724
  • 471 Czosnyka NM, Borgert AJ, Smith TJ. Pancreatic adenocarcinoma: effects of neoadjuvant therapy on post-pancreatectomy outcomes – an American College of Surgeons National Surgical Quality Improvement Program targeted variable review. HPB 2017; 19 (10) 927-932
  • 472 de Geus SWL. et al. Neoadjuvant therapy versus upfront surgery for resected pancreatic adenocarcinoma: A nationwide propensity score matched analysis. Surgery (United States) 2017; 161 (03) 592-601
  • 473 Mirkin KA, Hollenbeak CS, Wong J. Survival impact of neoadjuvant therapy in resected pancreatic cancer: A Prospective Cohort Study involving 18332 patients from the National Cancer Data Base. International Journal of Surgery 2016; 34: 96-102
  • 474 Dhir M. et al. FOLFIRINOX Versus Gemcitabine/Nab-Paclitaxel for Neoadjuvant Treatment of Resectable and Borderline Resectable Pancreatic Head Adenocarcinoma. Annals of Surgical Oncology 2018; 25 (07) 1896-1903
  • 475 Haeno H. et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell 2012; 148 (01) 362-375
  • 476 Zhao Q. et al. Pathologic complete response to neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma is associated with a better prognosis. Ann Diagn Pathol 2012; 16 (01) 29-37
  • 477 Estrella JS. et al. Post-therapy pathologic stage and survival in patients with pancreatic ductal adenocarcinoma treated with neoadjuvant chemoradiation. Cancer 2012; 118 (01) 268-277
  • 478 Versteijne E. et al. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. The British journal of surgery 2018; 105 (08) 946-958
  • 479 Mokdad AA. et al. Neoadjuvant Therapy Followed by Resection Versus Upfront Resection for Resectable Pancreatic Cancer: A Propensity Score Matched Analysis. Journal of Clinical Oncology 2017; 35 (05) 515-522
  • 480 Motoi F. et al. Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP05). Japanese Journal of Clinical Oncology 2019; 49 (02) 190-194
  • 481 Golcher H. et al. Neoadjuvant chemoradiation therapy with gemcitabine/cisplatin and surgery versus immediate surgery in resectable pancreatic cancer: results of the first prospective randomized phase II trial. Strahlentherapie und Onkologie 2015; 191 (01) 7-16
  • 482 Truty MJ. et al Factors Predicting Response, Perioperative Outcomes, and Survival Following Total Neoadjuvant Therapy for Borderline/Locally Advanced Pancreatic Cancer. Annals of surgery 2019
  • 483 de Geus SWL. et al. Neoadjuvant therapy versus upfront surgical strategies in resectable pancreatic cancer: A Markov decision analysis. European Journal of Surgical Oncology 2016; 42 (10) 1552-1560
  • 484 Franko J. et al. Chemotherapy and radiation components of neoadjuvant treatment of pancreatic head adenocarcinoma: Impact on perioperative mortality and long-term survival. European Journal of Surgical Oncology 2017; 43 (02) 351-357
  • 485 Fisher AV. et al. The Impact of Hospital Neoadjuvant Therapy Utilization on Survival Outcomes for Pancreatic Cancer. Annals of Surgical Oncology 2018; 25 (09) 2661-2668
  • 486 Oba A. et al. Prognosis Based Definition of Resectability in Pancreatic Cancer: A Road Map to New Guidelines. Annals of surgery 2020; DOI: 10.1097/sla.0000000000003859.
  • 487 Ghaneh P. et al. ESPAC-5F: Four-arm, prospective, multicenter, international randomized phase II trial of immediate surgery compared with neoadjuvant gemcitabine plus capecitabine (GEMCAP) or FOLFIRINOX or chemoradiotherapy (CRT) in patients with borderline resectable pancreatic cancer. Journal of Clinical Oncology 2020; 38 (15) 4505-4505
  • 488 Hammel P. et al. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA: Journal of the American Medical Association 2016; 315 (17) 1844-1853
  • 489 Jang JY. et al. Oncological Benefits of Neoadjuvant Chemoradiation With Gemcitabine Versus Upfront Surgery in Patients With Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. Annals of surgery 2018; 268 (02) 215-222
  • 490 Chen X. et al. Neoadjuvant radiation followed by resection versus upfront resection for locally advanced pancreatic cancer patients: a propensity score matched analysis. Oncotarget 2017; 8 (29) 47831-47840
  • 491 Gemenetzis G. et al. Survival in Locally Advanced Pancreatic Cancer After Neoadjuvant Therapy and Surgical Resection. Annals of surgery 2018; DOI: 10.1097/SLA.0000000000002753.
  • 492 Hackert T. et al. Locally advanced pancreatic cancer: Neoadjuvant therapy with folfirinox results in resectability in 60% of the patients. Annals of surgery 2016; 264 (03) 457-461
  • 493 Nagakawa Y. et al. Clinical Impact of Neoadjuvant Chemotherapy and Chemoradiotherapy in Borderline Resectable Pancreatic Cancer: Analysis of 884 Patients at Facilities Specializing in Pancreatic Surgery. Annals of Surgical Oncology 2019; DOI: 10.1245/s10434-018-07131-8.
  • 494 Pietrasz D. et al. How Does Chemoradiotherapy Following Induction FOLFIRINOX Improve the Results in Resected Borderline or Locally Advanced Pancreatic Adenocarcinoma? An AGEO-FRENCH Multicentric Cohort. Annals of Surgical Oncology 2019; 26 (01) 109-117
  • 495 Conroy T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364 (19) 1817-1825
  • 496 Von Hoff DD. et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N Engl J Med 2013; DOI: 10.1056/NEJMoa1304369.
  • 497 Macarulla T. et al. Phase I/II Trial to Evaluate the Efficacy and Safety of Nanoparticle Albumin-Bound Paclitaxel in Combination With Gemcitabine in Patients With Pancreatic Cancer and an ECOG Performance Status of 2. Journal of Clinical Oncology 2019; 37 (03) 230-238
  • 498 Kasperk R. et al. Intraoperative radiotherapy for pancreatic carcinoma. Br J Surg 1995; 82 (09) 1259-1261
  • 499 Reni M. et al. Effect on local control and survival of electron beam intraoperative irradiation for resectable pancreatic adenocarcinoma. Int J Radiat Oncol Biol Phys 2001; 50 (03) 651-658
  • 500 Yamaguchi K. et al. ERT following IORT improves survival of patients with resectable pancreatic cancer. Hepatogastroenterology 2005; 52 (64) 1244-1249
  • 501 Messick C. et al. Early experience with intraoperative radiotherapy in patients with resected pancreatic adenocarcinoma. Am J Surg 2008; 195 (03) 308-311
  • 502 Showalter TN. et al. Does intraoperative radiation therapy improve local tumor control in patients undergoing pancreaticoduodenectomy for pancreatic adenocarcinoma? A propensity score analysis. Ann Surg Oncol 2009; 16 (08) 2116-2122
  • 503 Ruano-Ravina A, Almazan Ortega R, Guedea F. Intraoperative radiotherapy in pancreatic cancer: a systematic review. Radiother Oncol 2008; 87 (03) 318-325
  • 504 Zygogianni GA. et al. Intraoperative radiation therapy on pancreatic cancer patients: a review of the literature. Minerva Chir 2011; 66 (04) 361-369
  • 505 Nagai S. et al. Prognostic implications of intraoperative radiotherapy for unresectable pancreatic cancer. Pancreatology 2011; 11 (01) 68-75
  • 506 Karasawa K. et al. Efficacy of novel hypoxic cell sensitiser doranidazole in the treatment of locally advanced pancreatic cancer: long-term results of a placebo-controlled randomised study. Radiother Oncol 2008; 87 (03) 326-330
  • 507 Suker M. et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet Oncology 2016; 17 (06) 801-810
  • 508 Kunzmann V. et al. Nab-paclitaxel plus gemcitabine versus nab-paclitaxel plus gemcitabine followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): a multicentre, randomised, phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6 (02) 128-138
  • 509 Bernard V. et al. Circulating Nucleic Acids Are Associated With Outcomes of Patients With Pancreatic Cancer. Gastroenterology 2019; 156 (01) 108
  • 510 Tsai S. et al. Importance of Normalization of CA19-9 Levels Following Neoadjuvant Therapy in Patients With Localized Pancreatic Cancer. Ann Surg 2020; 271 (04) 740-747
  • 511 Akita H. et al. FDG-PET predicts treatment efficacy and surgical outcome of pre-operative chemoradiation therapy for resectable and borderline resectable pancreatic cancer. European Journal of Surgical Oncology 2017; 43 (06) 1061-1067
  • 512 Aldakkak M. et al. Pre-treatment carbohydrate antigen 19-9 does not predict the response to neoadjuvant therapy in patients with localized pancreatic cancer. HPB: the official journal of the International Hepato Pancreato Biliary Association 2015; 17 (10) 942-952
  • 513 Aoki S. et al. Decreased serum carbohydrate antigen 19-9 levels after neoadjuvant therapy predict a better prognosis for patients with pancreatic adenocarcinoma: A multicenter case-control study of 240 patients. BMC Cancer 2019; 19 (01) 252
  • 514 Ferrone CR. et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Annals of surgery 2015; 261 (01) 12-17
  • 515 Reni M. et al. Randomized phase 2 trial of nab-paclitaxel plus gemcitabine, 6 capecitabine, cisplatin (PAXG regimen) in metastatic pancreatic adenocarcinoma. Annals of Oncology 2017; 28: v252ƒ__
  • 516 Mallinson CN. et al. Chemotherapy in pancreatic cancer: results of a controlled, prospective, randomised, multicentre trial. Br Med J 1980; 281: 1589-1591
  • 517 Palmer KR. et al. Chemotherapy prolongs survival in inoperable pancreatic carcinoma. Br J Surg 1994; 81 (06) 882-885
  • 518 Glimelius B. et al. Chemotherapy improves survival and quality of life in advanced pancreatic and biliary cancer. Ann Oncol 1996; 7 (06) 593-600
  • 519 Yip D. et al. Chemotherapy and radiotherapy for inoperable advanced pancreatic cancer. Cochrane Database Syst Rev 2006; 3: CD002093
  • 520 Burris 3rd HA. et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997; 15 (06) 2403-2413
  • 521 Sohal DPS. et al. Metastatic Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. Journal of Clinical Oncology 2016; 34 (23) 2784-2796
  • 522 Sultana A. et al. Meta-analyses of chemotherapy for locally advanced and metastatic pancreatic cancer. Journal of Clinical Oncology 2007; 25 (18) 2607-2615
  • 523 Louvet C. et al. Gemcitabine in combination with oxaliplatin compared with gemcitabine alone in locally advanced or metastatic pancreatic cancer: results of a GERCOR and GISCAD phase III trial. J Clin Oncol 2005; 23 (15) 3509-3516
  • 524 Heinemann V. et al. Randomized phase III trial of gemcitabine plus cisplatin compared with gemcitabine alone in advanced pancreatic cancer. J Clin Oncol 2006; 24 (24) 3946-3952
  • 525 Berlin JD. et al. Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J Clin Oncol 2002; 20 (15) 3270-3275
  • 526 Van Cutsem E. et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 2004; 22 (08) 1430-1438
  • 527 Storniolo AM. et al. An investigational new drug treatment program for patients with gemcitabine: results for over 3000 patients with pancreatic carcinoma. Cancer 1999; 85 (06) 1261-1268
  • 528 Herrmann R. et al. Gemcitabine (G) plus capecitabine (C) versus G alone in locally advanced or metastatic pancreatic cancer: a randomized phase III study of the Swiss Group for Clinical Cancer Research (SAKK) and the Central European Cooperative Oncology Group (CECOG). J Clin Oncol 2005; 23 (Suppl. 16) A4010
  • 529 Moore MJ. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology 2007; 25 (15) 1960-1966
  • 530 Von Hoff DD. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New England Journal of Medicine 2013; 369 (18) 1691ƒ-1703
  • 531 Heinemann V. et al. Meta-analysis of randomized trials: evaluation of benefit from gemcitabine-based combination chemotherapy applied in advanced pancreatic cancer. BMC Cancer 2008; 8: 82
  • 532 Goldstein D. et al. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. Journal of the National Cancer Institute 2015; 107 (02) DOI: 10.1093/jnci/dju413.
  • 533 Gargiulo P. et al. Predicting mortality and adverse events in patients with advanced pancreatic cancer treated with palliative gemcitabine-based chemotherapy in a multicentre phase III randomized clinical trial: the APC-SAKK risk scores. Therapeutic Advances in Medical Oncology 2019; 11 DOI: 10.1177/1758835918818351.
  • 534 Cunningham D. et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2009; 5513-5518 DOI: 10.1200/JCO.2009.24.2446.
  • 535 Romanus D. et al. Does health-related quality of life improve for advanced pancreatic cancer patients who respond to gemcitabine?. Analysis of a randomized phase III trial of the cancer and leukemia group B (CALGB 80303). Journal of Pain and Symptom Management 2012; 43 (02) 205-217
  • 536 Poplin E. et al. Phase III, randomized study of gemcitabine and oxaliplatin versus gemcitabine (fixed-dose rate infusion) compared with gemcitabine (30-minute infusion) in patients with pancreatic carcinoma E6201: a trial of the Eastern Cooperative Oncology Group. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2009; 3778-3785 DOI: 10.1200/JCO.2008.20.9007.
  • 537 Colucci G. et al. Randomized phase III trial of gemcitabine plus cisplatin compared with single-agent gemcitabine as first-line treatment of patients with advanced pancreatic cancer: the GIP-1 study. J Clin Oncol 2010; 28 (10) 1645-1651
  • 538 Herrmann R. et al. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2007; 2212-2217 DOI: 10.1200/JCO.2006.09.0886.
  • 539 Philip PA. et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest oncology group-directed intergroup trial S0205. Journal of Clinical Oncology 2010; 28 (22) 3605-3610
  • 540 Okusaka T. et al. Updated results from GEST study: a randomized, three-arm phase III study for advanced pancreatic cancer. Journal of Cancer Research and Clinical Oncology 2017; 143 (06) 1053-1059
  • 541 Yamaue H. et al. Multicenter, randomized, open-label Phase II study comparing S-1 alternate-day oral therapy with the standard daily regimen as a first-line treatment in patients with unresectable advanced pancreatic cancer. Cancer Chemotherapy and Pharmacology 2017; 79 (04) 813ƒ-823
  • 542 Gourgou-Bourgade S. et al. Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial. Journal of Clinical Oncology 2013; 31 (01) 23ƒ-29
  • 543 Thibodeau S, Voutsadakis IA. FOLFIRINOX chemotherapy in metastatic pancreatic cancer: A systematic review and meta-analysis of retrospective and phase II studies. Journal of Clinical Medicine 2018; 7 (01) 7
  • 544 Stein SM. et al. Final analysis of a phase II study of modified FOLFIRINOX in locally advanced and metastatic pancreatic cancer. British Journal of Cancer 2016; 114 (07) 737-743
  • 545 Maisey N. et al. Multicenter randomized phase III trial comparing protracted venous infusion (PVI) fluorouracil (5-FU) with PVI 5-FU plus mitomycin in inoperable pancreatic cancer. J Clin Oncol 2002; 20 (14) 3130-3136
  • 546 Reni M. et al. Gemcitabine versus cisplatin, epirubicin, fluorouracil, and gemcitabine in advanced pancreatic cancer: a randomised controlled multicentre phase III trial. Lancet Oncol 2005; 6 (06) 369-376
  • 547 Ducreux M. et al. A randomised trial comparing 5-FU with 5-FU plus cisplatin in advanced pancreatic carcinoma. Ann Oncol 2002; 13 (08) 1185-1191
  • 548 Dahan L. et al. Combination 5-fluorouracil, folinic acid and cisplatin (LV5FU2-CDDP) followed by gemcitabine or the reverse sequence in metastatic pancreatic cancer: final results of a randomised strategic phase III trial (FFCD 0301). Gut 2010; 59 (11) 1527-1534
  • 549 Tu C. et al. An Updated Meta-analysis and System Review:is Gemcitabine+Fluoropyrimidine in Combination a Better Therapy Versus Gemcitabine Alone for Advanced and Unresectable Pancreatic Cancer?. Asian Pacific journal of cancer prevention: APJCP 2015; 16 (14) 5681-5686
  • 550 Trouilloud I, Dupont-Gossard AC. et al. Fixed-dose rate gemcitabine alone or alternating with FOLFIRI.3 (irinotecan, leucovorin and fluorouracil) in the first-line treatment of patients with metastatic pancreatic adenocarcinoma: an AGEO randomised phase II study (FIRGEM). European journal of cancer (Oxford, England: 1990) 2014; 50 (18) 3116-3124
  • 551 Bachet JB. et al. Nab-paclitaxel plus either gemcitabine or simplified leucovorin and fluorouracil as first-line therapy for metastatic pancreatic adenocarcinoma (AFUGEM GERCOR): a non-comparative, multicentre, open-label, randomised phase 2 trial. Lancet Gastroenterol Hepatol 2017; 2 (05) 337-346
  • 552 Zhang S. et al. First-line chemotherapy regimens for locally advanced and metastatic pancreatic adenocarcinoma: A Bayesian analysis. Cancer Management and Research 2018; 10: 5965-5978
  • 553 Chin V. et al. Chemotherapy and radiotherapy for advanced pancreatic cancer. Cochrane Database of Systematic Reviews 2018; 2018 (03) CD011044
  • 554 Li Q. et al. Efficacy and safety of gemcitabine-fluorouracil combination therapy in the management of advanced pancreatic cancer: A meta-analysis of randomized controlled trials. PLoS ONE 2014; 9 (08) e104346
  • 555 Di Costanzo F. et al. Gemcitabine with or without continuous infusion 5-FU in advanced pancreatic cancer: a randomised phase II trial of the Italian oncology group for clinical research (GOIRC). Br J Cancer 2005; 93 (02) 185-189
  • 556 Scheithauer W. et al. Biweekly high-dose gemcitabine alone or in combination with capecitabine in patients with metastatic pancreatic adenocarcinoma: a randomized phase II trial. Ann Oncol 2003; 14 (01) 97-104
  • 557 Nakai Y. et al. A multicentre randomised phase II trial of gemcitabine alone vs gemcitabine and S-1 combination therapy in advanced pancreatic cancer: GEMSAP study. Br J Cancer 2012; 106 (12) 1934-1939
  • 558 Ueno H. et al. Randomized phase III study of gemcitabine plus S-1, S-1 alone, or gemcitabine alone in patients with locally advanced and metastatic pancreatic cancer in Japan and Taiwan: GEST study. Journal of Clinical Oncology 2013; 31 (13) 1640ƒ-1648
  • 559 Sudo K. et al. Randomized controlled study of gemcitabine plus S-1 combination chemotherapy versus gemcitabine for unresectable pancreatic cancer. Cancer Chemother Pharmacol 2014; 73 (02) 389-396
  • 560 Rocha Lima CM. et al. Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J Clin Oncol 2004; 22 (18) 3776-3783
  • 561 Stathopoulos GP. et al. A multicenter phase III trial comparing irinotecan-gemcitabine (IG) with gemcitabine (G) monotherapy as first-line treatment in patients with locally advanced or metastatic pancreatic cancer. Br J Cancer 2006; 95 (05) 587-592
  • 562 Oettle H. et al. A phase III trial of pemetrexed plus gemcitabine versus gemcitabine in patients with unresectable or metastatic pancreatic cancer. Ann Oncol 2005; 16 (10) 1639-1645
  • 563 Abou-Alfa GK. et al. Randomized phase III study of exatecan and gemcitabine compared with gemcitabine alone in untreated advanced pancreatic cancer. J Clin Oncol 2006; 24 (27) 4441-4447
  • 564 Kulke MH. et al. Randomized phase II study of gemcitabine administered at a fixed dose rate or in combination with cisplatin, docetaxel, or irinotecan in patients with metastatic pancreatic cancer: CALGB 89904. J Clin Oncol 2009; 27 (33) 5506-5512
  • 565 Hu J. et al. A meta-analysis of gemcitabine containing chemotherapy for locally advanced and metastatic pancreatic adenocarcinoma. Journal of Hematology and Oncology 2011; 4 DOI: 10.1186/1756-8722-4-11.
  • 566 Wang Y. et al. Efficacy and safety of gemcitabine plus erlotinib for locally advanced or metastatic pancreatic cancer: A systematic review and meta-analysis. Drug Design, Development and Therapy 2016; 10: 1961-1972
  • 567 Heinemann V. et al. Gemcitabine plus erlotinib followed by capecitabine versus capecitabine plus erlotinib followed by gemcitabine in advanced pancreatic cancer: final results of a randomised phase 3 trial of the “Arbeitsgemeinschaft Internistische Onkologie” (AIO-PK0104). Gut 2013; 62 (05) 751-759
  • 568 Haas M. et al. Efficacy of gemcitabine plus erlotinib in rash-positive patients with metastatic pancreatic cancer selected according to eligibility for FOLFIRINOX: A prospective phase II study of the ƒ_~Arbeitsgemeinschaft Internistische Onkologieƒ_T. European Journal of Cancer 2018; 94: 95-103
  • 569 Eltawil KM, Renfrew PD, Molinari M. Meta-analysis of Phase III randomized trials of molecular targeted therapies for advanced pancreatic cancer. HPB 2012; DOI: 10.1111/j.1477-2574.2012.00441.x.
  • 570 Ciliberto D. et al. Role of gemcitabine-based combination therapy in the management of advanced pancreatic cancer: a meta-analysis of randomised trials. Eur J Cancer 2013; 49 (03) 593-603
  • 571 Tong M. et al. Efficacy and safety of gemcitabine plus anti-angiogenesis therapy for advanced pancreatic cancer: A systematic review and meta-analysis of clinical randomized phase III trials. Journal of Cancer 2019; 10 (04) 968-978
  • 572 Ciliberto D. et al. Systematic review and meta-analysis on targeted therapy in advanced pancreatic cancer. Pancreatology 2016; 16 (02) 249-258
  • 573 Bramhall SR. et al. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br J Cancer 2002; 87 (02) 161-167
  • 574 Kindler HL. et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 2010; 28 (22) 3617-3622
  • 575 Kindler HL. et al. Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: A double-blind randomised phase 3 study. The Lancet Oncology 2011; 12 (03) 256-262
  • 576 Goncalves A. et al. BAYPAN study: a double-blind phase III randomized trial comparing gemcitabine plus sorafenib and gemcitabine plus placebo in patients with advanced pancreatic cancer. Annals of Oncology 2012; 23 (11) 2799ƒ-2805
  • 577 Rougier P. et al. Randomised, placebo-controlled, double-blind, parallel-group phase III study evaluating aflibercept in patients receiving first-line treatment with gemcitabine for metastatic pancreatic cancer. European Journal of Cancer 2013; 49 (12) 2633-2642
  • 578 Fuchs CS. et al. A phase 3 randomized, double-blind, placebo-controlled trial of ganitumab or placebo in combination with gemcitabine as first-line therapy for metastatic adenocarcinoma of the pancreas: the GAMMA trial. Annals of oncology: official journal of the European Society for Medical Oncology 2015; 26 (05) 921ƒ-927
  • 579 Deplanque G. et al. A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer. Ann Oncol 2015; 26 (06) 1194-1200
  • 580 Hurwitz HI. et al. Randomized, Double-Blind, Phase II Study of Ruxolitinib or Placebo in Combination With Capecitabine in Patients With Metastatic Pancreatic Cancer for Whom Therapy With Gemcitabine Has Failed. Journal of Clinical Oncology 2015; 33 (34) 4039-4047
  • 581 Yamaue H. et al. Randomized phase II/III clinical trial of elpamotide for patients with advanced pancreatic cancer: PEGASUS-PC Study. Cancer Science 2015; 106 (07) 883-890
  • 582 Middleton G. et al Vandetanib plus gemcitabine versus placebo plus gemcitabine in locally advanced or metastatic pancreatic carcinoma (ViP): a prospective, randomised, double-blind, multicentre phase 2 trial. Lancet Oncology 2017; (no pagination) DOI: 10.1016/S1470-2045(17)30084-0.
  • 583 Schultheis B. et al. Gemcitabine combined with the monoclonal antibody nimotuzumab is an active first-line regimen in KRAS wildtype patients with locally advanced or metastatic pancreatic cancer: a multicenter, randomized phase IIb study. Annals of oncology: official journal of the European Society for Medical Oncology 2017; 28 (10) 2429ƒ-2435
  • 584 Evans JTRJ. et al. Phase 2 placebo-controlled, double-blind trial of dasatinib added to gemcitabine for patients with locally-advanced pancreatic cancer. Annals of Oncology 2017; 28 (02) 354-361
  • 585 Melisi D. et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. British Journal of Cancer 2018; 119 (10) 1208ƒ-1214
  • 586 Schwartzberg LS. et al. A randomized, open-label, safety and exploratory efficacy study of Kanglaite Injection (KLTi) plus gemcitabine versus gemcitabine in patients with advanced pancreatic cancer. Journal of Cancer 2017; 8 (10) 1872-1883
  • 587 Golan T. et al. LY2495655, an antimyostatin antibody, in pancreatic cancer: a randomized, phase 2 trial. Journal of Cachexia, Sarcopenia and Muscle 2018; 9 (05) 871-879
  • 588 Reni M. et al. Maintenance sunitinib or observation in metastatic pancreatic adenocarcinoma: A phase II randomised trial. European Journal of Cancer 2013; 49 (17) 3609-3615
  • 589 O’Reilly EM. et al. Randomized, Multicenter, Phase II Trial of Gemcitabine and Cisplatin With or Without Veliparib in Patients With Pancreas Adenocarcinoma and a Germline BRCA/PALB2 Mutation. J Clin Oncol 2020; 38 (13) 1378-1388
  • 590 Park W. et al. Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and Optimize Treatment Selection. Clinical Cancer Research 2020; 26 DOI: 10.1158/1078-0432.CCR-20-0418.
  • 591 Golan T. et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. The New England Journal of Medicine 2019; DOI: 10.1056/NEJMoa1903387.
  • 592 Holter S. et al. Germline BRCA Mutations in a Large Clinic-Based Cohort of Patients With Pancreatic Adenocarcinoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2015; 33 (28) 3124-3129
  • 593 Golan T. et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. The New England Journal of Medicine 2019; DOI: 10.1056/NEJMoa1903387.
  • 594 Walsh CS. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy?. Gynecologic Oncology 2015; 137 (02) 343-350
  • 595 Bao Z. et al. Effectiveness and safety of poly (ADP-ribose) polymerase inhibitors in cancer therapy: A systematic review and meta-analysis. Oncotarget 2016; 7 (07) 7629-7639
  • 596 Le DT. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357: 409-413
  • 597 Humphris JL. et al. Hypermutation In Pancreatic Cancer. Gastroenterology 2017; 152 (01) 68
  • 598 Johansson H. et al. Immune checkpoint therapy for pancreatic cancer. World J Gastroenterol 2016; 22 (43) 9457-9476
  • 599 Azad NS. et al. Nivolumab Is Effective in Mismatch Repair-Deficient Noncolorectal Cancers: Results From Arm Z1D-A Subprotocol of the NCI-MATCH (EAY131) Study. J Clin Oncol 2020; 38 (03) 214-222
  • 600 Ribas A. Releasing the Brakes on Cancer Immunotherapy. N Engl J Med 2015; 373 (16) 1490-1492
  • 601 Hu ZI. et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: Challenges and recommendations. Clinical Cancer Research 2018; 24 (06) 1326-1336
  • 602 Le DT. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015; 372 (26) 2509-2520
  • 603 Marabelle A. et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J Clin Oncol 2020; 38 (01) 1-10
  • 604 Wang M. et al. S-1 plus CIK as second-line treatment for advanced pancreatic cancer. Med Oncol 2013; 30 (04) 747
  • 605 Middleton G. et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncology 2014; 15 (08) 829-840
  • 606 Nishida S. et al. Combination gemcitabine and WT1 peptide vaccination improves progression-free survival in advanced pancreatic ductal adenocarcinoma: A phase II randomized study. Cancer Immunology Research 2018; 6 (03) 320-331
  • 607 Le DT. et al. Results from a Phase IIb, Randomized, Multicenter Study of GVAX Pancreas and CRS-207 Compared with Chemotherapy in Adults with Previously Treated Metastatic Pancreatic Adenocarcinoma (ECLIPSE Study). Clinical cancer research: an official journal of the American Association for Cancer Research 2019; DOI: 10.1158/1078-0432.CCR-18-2992.
  • 608 Ulrich-Pur H. et al. Irinotecan plus raltitrexed vs raltitrexed alone in patients with gemcitabine-pretreated advanced pancreatic adenocarcinoma. British journal of cancer 2003; 88 (08) 1180-1184
  • 609 Ciuleanu TE. et al. A randomised Phase III trial of glufosfamide compared with best supportive care in metastatic pancreatic adenocarcinoma previously treated with gemcitabine. Eur J Cancer 2009; 45 (09) 1589-1596
  • 610 Pelzer U. et al. Best supportive care (BSC) versus oxaliplatin, folinic acid and 5-fluorouracil (OFF) plus BSC in patients for second-line advanced pancreatic cancer: a phase III-study from the German CONKO-study group. Eur J Cancer 2011; 47 (11) 1676-1681
  • 611 Oettle H. et al. Second-line oxaliplatin, folinic acid, and fluorouracil versus folinic acid and fluorouracil alone for gemcitabine-refractory pancreatic cancer: outcomes from the CONKO-003 trial. J Clin Oncol 2014; 32 (23) 2423-2429
  • 612 Gill S. et al. PANCREOX: A Randomized Phase III Study of Fluorouracil/Leucovorin With or Without Oxaliplatin for Second-Line Advanced Pancreatic Cancer in Patients Who Have Received Gemcitabine-Based Chemotherapy. J Clin Oncol 2016; 34 (32) 3914-3920
  • 613 Wang-Gillam A. et al Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. The Lancet 2016; North American Edition(10018) 387: 545-557
  • 614 Macarulla T. et al. Liposomal irinotecan and 5-fluorouracil/leucovorin in older patients with metastatic pancreatic cancer ƒ_“ A subgroup analysis of the pivotal NAPOLI-1 trial”. Journal of Geriatric Oncology 2019; DOI: 10.1016/j.jgo.2019.02.011.
  • 615 Wang-Gillam A. et al. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: Final overall survival analysis and characteristics of long-term survivors. European Journal of Cancer 2019; 108: 78-87
  • 616 Chen LT. et al. Survival with nal-IRI (liposomal irinotecan) plus 5-fluorouracil and leucovorin versus 5-fluorouracil and leucovorin in per-protocol and non-per-protocol populations of NAPOLI-1: Expanded analysis of a global phase 3 trial. European Journal of Cancer 2018; 105: 71-78
  • 617 Hubner RA. et al. Quality of life in metastatic pancreatic cancer patients receiving liposomal irinotecan plus 5-fluorouracil and leucovorin. European Journal of Cancer 2019; 106: 24ƒ-33
  • 618 Berk V. et al. XELOX vs. FOLFOX4 as second line chemotherapy in advanced pancreatic cancer. Hepato-gastroenterology 2012; 59 (120) 2635-2639
  • 619 Bodoky G. et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy...[corrected] [published erratum appears in INVEST NEW DRUGS 2012; 30(3):1273-3]. Investigational New Drugs 2012; 30 (03) 1216-1223
  • 620 Minimally invasive test may detect early pancreatic cancer. AORN Journal 2007; 86 (06) 1053-1053
  • 621 Chung V. et al. Effect of Selumetinib and MK-2206 vs Oxaliplatin and Fluorouracil in Patients With Metastatic Pancreatic Cancer After Prior Therapy: SWOG S1115 Study Randomized Clinical Trial. JAMA oncology 2017; 3 (04) 516ƒ-522
  • 622 Ioka T. et al. TAS-118 (S-1 plus leucovorin) versus S-1 in patients with gemcitabine-refractory advanced pancreatic cancer: a randomised, open-label, phase 3 study (GRAPE trial). European Journal of Cancer 2019; 106: 78ƒ-88
  • 623 Hurwitz H. et al. Ruxolitinib + capecitabine in advanced/metastatic pancreatic cancer after disease progression/intolerance to first-line therapy: JANUS 1 and 2 randomized phase III studies. Investigational New Drugs 2018; 36 (04) 683-695
  • 624 Herman JM. et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer (0008543X) 2015; 121 (07) 1128-1137
  • 625 Loehrer Sr PJ. et al. Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol 2011; 29 (31) 4105-4112
  • 626 Chauffert B. et al. Phase III trial comparing intensive induction chemoradiotherapy (60 Gy, infusional 5-FU and intermittent cisplatin) followed by maintenance gemcitabine with gemcitabine alone for locally advanced unresectable pancreatic cancer. Definitive results of the 2000-01 FFCD/SFRO study. Ann Oncol 2008; 19 (09) 1592-1599
  • 627 Ambe C. et al. A Meta-analysis of Randomized Clinical Trials of Chemoradiation Therapy in Locally Advanced Pancreatic Cancer. Journal of gastrointestinal cancer 2015; 46 DOI: 10.1007/s12029-015-9734-z.
  • 628 Krishnan S. et al. Focal Radiation Therapy Dose Escalation Improves Overall Survival in Locally Advanced Pancreatic Cancer Patients Receiving Induction Chemotherapy and Consolidative Chemoradiation. Int J Radiat Oncol Biol Phys 2016; 94 (04) 755-765
  • 629 Ma SJ. et al. Dose escalation of radiation therapy with or without induction chemotherapy for unresectable locally advanced pancreatic cancer. Radiat Oncol 2018; 13 (01) 214
  • 630 Chuong MD. et al. Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. International Journal of Radiation Oncology, Biology, Physics 2013; 86 (03) 516-522
  • 631 Geus S. et al. Stereotactic body radiotherapy for unresected pancreatic cancer: A nationwide review: SBRT for Unresected Pancreatic Cancer. Cancer 2017; 123 DOI: 10.1002/cncr.30856.
  • 632 Balaban EP. et al. Locally Advanced, Unresectable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. Journal of Clinical Oncology 2016; 34 (22) 2654-2668
  • 633 Palta M. et al. Radiation Therapy for Pancreatic Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract Radiat Oncol 2019; 9 (05) 322-332
  • 634 Zhu CP. et al. Gemcitabine in the chemoradiotherapy for locally advanced pancreatic cancer: a meta-analysis. Radiother Oncol 2011; 99 (02) 108-113
  • 635 Hurt CN. et al. Long-term results and recurrence patterns from SCALOP: a phase II randomised trial of gemcitabine- or capecitabine-based chemoradiation for locally advanced pancreatic cancer. Br J Cancer 2017; 116 (10) 1264-1270
  • 636 Mercadante S. Pain treatment and outcomes for patients with advanced cancer who receive follow-up care at home. Cancer 1999; 85 (08) 1849-1858
  • 637 Zech DF. et al. Validation of World Health Organization Guidelines for cancer pain relief: a 10-year prospective study. Pain 1995; 63 (01) 65-76
  • 638 Marinangeli F. et al. Use of strong opioids in advanced cancer pain: a randomized trial. J Pain Symptom Manage 2004; 27 (05) 409-416
  • 639 Grahm AL, Andren-Sandberg A. Prospective evaluation of pain in exocrine pancreatic cancer. Digestion 1997; 58 (06) 542-549
  • 640 Caraceni A, Portenoy RK. Pain management in patients with pancreatic carcinoma. Cancer 1996; 78 (03) 639-653
  • 641 Ross GJ. et al. Sonographically guided paracentesis for palliation of symptomatic malignant ascites. Am J Roentgenol 1989; 153 (06) 1309-1311
  • 642 McNicol E. et al. Nonsteroidal anti-inflammatory drugs, alone or combined with opioids, for cancer pain: a systematic review. J Clin Oncol 2004; 22 (10) 1975-1992
  • 643 Carr DB. et al. Evidence report on the treatment of pain in cancer patients. J Natl Cancer Inst Monogr 2004; 32: 23-31
  • 644 Payne R. et al. Quality of life and cancer pain: satisfaction and side effects with transdermal fentanyl versus oral morphine. J Clin Oncol 1998; 16 (04) 1588-1593
  • 645 De Conno F. et al. Role of rectal route in treating cancer pain: a randomized crossover clinical trial of oral versus rectal morphine administration in opioid-naive cancer patients with pain. J Clin Oncol 1995; 13 (04) 1004-1008
  • 646 Cherny NI. The management of cancer pain. CA Cancer J Clin 2000; 50 (02) 70-116
  • 647 Gilmer-Hill HS. et al. Intrathecal morphine delivered via subcutaneous pump for intractable pain in pancreatic cancer. Surg Neurol 1999; 51 (01) 6-11
  • 648 Staats PS. et al. The effects of alcohol celiac plexus block, pain, and mood on longevity in patients with unresectable pancreatic cancer: a double-blind, randomized, placebo-controlled study. Pain Med 2001; 2 (01) 28-34
  • 649 Eisenberg E, Carr DB, Chalmers TC. Neurolytic celiac plexus block for treatment of cancer pain: a meta-analysis. Anesth Analg 1995; 80 (02) 290-295
  • 650 Wong GY. et al. Effect of neurolytic celiac plexus block on pain relief, quality of life, and survival in patients with unresectable pancreatic cancer: a randomized controlled trial. Jama 2004; 291 (09) 1092-1099
  • 651 Stefaniak T. et al. A comparison of two invasive techniques in the management of intractable pain due to inoperable pancreatic cancer: neurolytic celiac plexus block and videothoracoscopic splanchnicectomy. Eur J Surg Oncol 2005; 31 (07) 768-773
  • 652 Arends J. et al. ESPEN Guidelines on Enteral Nutrition: Non-surgical oncology. Clin Nutr 2006; 25 (02) 245-259
  • 653 Arends J. et al. DGEM Leitlinie Enterale Ernährung: Onkologie. Akt Ernähr Med 2003; 28: 61-68
  • 654 Bjelakovic G. et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 2007; 297 (08) 842-857
  • 655 Wigmore SJ. et al. Ibuprofen reduces energy expenditure and acute-phase protein production compared with placebo in pancreatic cancer patients. Br J Cancer 1995; 72 (01) 185-188
  • 656 Gordon JN. et al. Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut 2005; 54 (04) 540-545
  • 657 Jatoi A. et al. Dronabinol versus megestrol acetate versus combination therapy for cancer-associated anorexia: a North Central Cancer Treatment Group study. J Clin Oncol 2002; 20 (02) 567-573
  • 658 Loprinzi CL. et al. Randomized comparison of megestrol acetate versus dexamethasone versus fluoxymesterone for the treatment of cancer anorexia/cachexia. J Clin Oncol 1999; 17 (10) 3299-3306
  • 659 Moss AC, Morris E. Mac Mathuna, Palliative biliary stents for obstructing pancreatic carcinoma. Cochrane Database Syst Rev 2006; 1: CD004200
  • 660 Hausegger KA. et al. Treatment of malignant biliary obstruction with polyurethane-covered Wallstents. Am J Roentgenol 1998; 170 (02) 403-408
  • 661 Isayama H. et al. A prospective randomised study of “covered” versus “uncovered” diamond stents for the management of distal malignant biliary obstruction. Gut 2004; 53 (05) 729-734
  • 662 Speer AG. et al. Randomised trial of endoscopic versus percutaneous stent insertion in malignant obstructive jaundice. Lancet 1987; 2: 57-62
  • 663 Urbach DR. et al. Cohort study of surgical bypass to the gallbladder or bile duct for the palliation of jaundice due to pancreatic cancer. Ann Surg 2003; 237 (01) 86-93
  • 664 DiFronzo LA, Egrari S, O’Connell TX. Choledochoduodenostomy for palliation in unresectable pancreatic cancer. Arch Surg 1998; 133 (08) 820-825
  • 665 Aranha GV, Prinz RA, Greenlee HB. Biliary enteric bypass for benign and malignant disease. Am Surg 1987; 53 (07) 403-406
  • 666 Song HY. et al. A dual expandable nitinol stent: experience in 102 patients with malignant gastroduodenal strictures. J Vasc Interv Radiol 2004; 15 (12) 1443-1449
  • 667 Kaw M. et al. Role of self-expandable metal stents in the palliation of malignant duodenal obstruction. Surg Endosc 2003; 17 (04) 646-650
  • 668 Lillemoe KD. et al. Is prophylactic gastrojejunostomy indicated for unresectable periampullary cancer? A prospective randomized trial. Ann Surg 1999; 230 (03) 322-328
  • 669 Smith TJ. et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol 2006; 24 (19) 3187-3205
  • 670 Rizzo JD. et al. Use of epoetin in patients with cancer: evidence-based clinical practice guidelines of the American Society of Clinical Oncology and the American Society of Hematology. J Clin Oncol 2002; 20 (19) 4083-4107
  • 671 Bokemeyer C. et al. EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer: 2006 update. Eur J Cancer 2007; 43 (02) 258-270
  • 672 Schuchter LM. et al. 2002 update of recommendations for the use of chemotherapy and radiotherapy protectants: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 2002; 20 (12) 2895-2903
  • 673 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, D.K., AWMF). Entwicklung von leitlinienbasierten Qualitätsindikatoren. Methodenpapier für das Leitlinienprogramm Onkologie, Version 2.1. 2017 Available from: http://www.leitlinienprogramm-onkologie.de/methodik/informationen-zur-methodik/