Horm Metab Res 2022; 54(06): 339-353
DOI: 10.1055/a-1846-4878
Review

Rare Metabolic and Endocrine Diseases with Cardiovascular Involvement: Insights from Cardiovascular Magnetic Resonance – A Review

1   Cardiovascular Magnetic Resonance, Euromedica General Clinic, Thessaloniki, Greece
,
Sophie I. Mavrogeni
2   Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
3   First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece, Exercise Physiology and Sport Medicine Clinic, Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, Athens, Greece
› Author Affiliations

Abstract

The identification of rare diseases with cardiovascular involvement poses significant diagnostic challenges due to the rarity of the diseases, but also due to the lack of knowledge and expertise. Most of them remain underrecognized and undiagnosed, leading to clinical mismanagement and affecting the patients’ prognosis, as these diseases are per definition life-threatening or chronic debilitating. This article reviews the cardiovascular involvement of the most well-known rare metabolic and endocrine diseases and their diagnostic approach through the lens of cardiovascular magnetic resonance (CMR) imaging and its prognostic role, highlighting its fundamental value compared to other imaging modalities.



Publication History

Received: 16 February 2022

Accepted after revision: 08 May 2022

Accepted Manuscript online:
08 May 2022

Article published online:
13 June 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Aronson JK. Rare diseases and orphan drugs. Br J Clin Pharmacol 2006; 61: 243-245
  • 2 Lavandeira A. Orphan drugs: legal aspects, current situation. Haemophilia 2002; 8: 194-198
  • 3 Baldovino S, Moliner AM, Taruscio D. et al. Rare diseases in Europe: from a wide to a local perspective. Isr Med Assoc J 2016; 18: 359-363
  • 4 Nguengang Wakap S, Lambert DM, Olry A. et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020; 28: 165-173
  • 5 Esposito R, Santoro C, Mandoli GE. et al. Cardiac imaging in Anderson-Fabry disease: past, present and future. J Clin Med 2021; 10: 1994
  • 6 Imbriaco M, Pisani A, Spinelli L. et al. Effects of enzyme-replacement therapy in patients with Anderson-Fabry disease: A prospective long-term cardiac magnetic resonance imaging study. Heart 2009; 95: 1103-1107
  • 7 Kozor R, Callaghan F, Tchan M. et al. A disproportionate contribution of papillary muscles and trabeculations to total left ventricular mass makes choice of cardiovascular magnetic resonance analysis technique critical in Fabry disease. J Cardiovasc Magn Reson 2015; 17: 22
  • 8 Kozor R, Nordin S, Treibel TA. et al. Insight into hypertrophied hearts: a cardiovascular magnetic resonance study of papillary muscle mass and T1 mapping. Eur Heart J Cardiovasc Imaging 2017; 18: 1034-1040
  • 9 Kozor R, Grieve SM, Tchan MC. et al. Cardiac involvement in genotype-positive Fabry disease patients assessed by cardiovascular MR. Heart 2016; 102: 298-302
  • 10 Deva DP, Hanneman K, Li Q. et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease. J Cardiovasc Magn Reson 2016; 18: 14
  • 11 Vijapurapu R, Nordin S, Baig S. et al. Characterisation of systolic myocardial strain in patients with fabry disease. Heart 2018; 104: 50
  • 12 Moon JC, Sachdev B, Elkington AG. et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 2003; 24: 2151-2155
  • 13 De Cobelli F, Esposito A, Belloni E. et al. Delayed-enhanced cardiac MRI for differentiation of Fabry’s disease from symmetric hypertrophic cardiomyopathy. AJR Am J Roentgenol 2009; 192: 97-102
  • 14 Nojiri A, Anan I, Morimoto S. et al. Clinical findings of gadolinium-enhanced cardiac magnetic resonance in Fabry patients. J Cardiol 2020; 75: 27-33
  • 15 Weidemann F, Breunig F, Beer M. et al. The variation of morphological and functional cardiac manifestation in Fabry disease: potential implications for the time course of the disease. Eur Heart J 2005; 26: 1221-1227
  • 16 Niemann M, Herrmann S, Hu K. et al. Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging 2011; 4: 592-601
  • 17 Hsu TR, Hung SC, Chang FP. et al. Later onset Fabry disease, cardiac damage progress in silence: experience with a highly prevalent mutation. J Am Coll Cardiol 2016; 68: 2554-2563
  • 18 Moonen A, Lal S, Ingles J. et al. Prevalence of Anderson-Fabry disease in a cohort with unexplained late gadolinium enhancement on cardiac MRI. Int J Cardiol 2020; 304: 122-124
  • 19 Hanneman K, Karur GR, Wasim S. et al. Left ventricular hypertrophy and late gadolinium enhancement at cardiac MRI are associated with adverse cardiac events in Fabry disease. Radiology 2020; 294: 42-49
  • 20 Arends M, Biegstraaten M, Hughes DA. et al. Retrospective study of long-term outcomes of enzyme replacement therapy in Fabry disease: analysis of prognostic factors. PLoS One 2017; 8: e0182379
  • 21 Koeppe S, Neubauer H, Breunig F. et al. MR-based analysis of regional cardiac function in relation to cellular integrity in Fabry disease. Int J Cardiol 2012; 160: 53-58
  • 22 Weidemann F, Niemann M, Breunig F. et al. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation 2009; 119: 524-529
  • 23 Beer M, Weidemann F, Breunig F. et al. Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry’s cardiomyopathy. Am J Cardiol 2006; 97: 1515-1518
  • 24 Hughes DA, Elliott PM, Shah J. et al. Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: a randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart 2008; 94: 153-158
  • 25 Krämer J, Niemann M, Störk S. et al. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease. Am J Cardiol 2014; 114: 895-900
  • 26 Messroghli DR, Moon JC, Ferreira VM. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2*  and extracellular volume: a consensus statement by the society for cardiovascular magnetic resonance (SCMR) endorsed by the european association for cardiovascular imaging (EACVI). J Cardiovasc Magn Reson 2017; 19: 75
  • 27 Walter TC, Knobloch G, Canaan-Kuehl S. et al. Segment-by-segment assessment of left ventricular myocardial affection in Anderson-Fabry disease by non-enhanced T1-mapping. Acta Radiologica 2017; 58: 914-921
  • 28 Thompson RB, Chow K, Khan A. et al. T1 mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 2013; 6: 637-645
  • 29 Sado DM, White SK, Piechnik SK. et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013; 6: 392-398
  • 30 Karur GR, Robison S, Iwanochko RM. et al. Use of myocardial T1 mapping at 3.0 T to differentiate Anderson-Fabry disease from hypertrophic cardiomyopathy. Radiology 2018; 288: 398-406
  • 31 Pica S, Sado DM, Maestrini V. et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16: 99
  • 32 Camporeale A, Pieroni M, Pieruzzi F. et al. Predictors of clinical evolution in prehypertrophic Fabry disease. Circ Cardiovasc Imaging 2019; 12: e008424
  • 33 Hagège A, Réant P, Habib G. et al. Fabry disease in cardiology practice: literature review and expert point of view. Arch Cardiovasc Dis 2019; 112: 278-287
  • 34 Swoboda PP, McDiarmid AK, Erhayiem B. et al. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete’s heart. J Am Coll Cardiol 2016; 67: 2189-2190
  • 35 Deborde E, Dubourg B, Bejar S. et al. Differentiation between Fabry disease and hypertrophic cardiomyopathy with cardiac T1 mapping. Diagn Interv Imaging 2020; 101: 59-67
  • 36 Réant P, Testet E, Reynaud A. et al. Characterization of Fabry disease cardiac involvement according to longitudinal strain, cardiometabolic exercise test, and T1 mapping. Int J Cardiovasc Imaging 2020; 36: 1333-1342
  • 37 Nordin S, Kozor R, Medina-Menacho K. et al. Proposed stages of myocardial phenotype development in Fabry disease. JACC Cardiovasc Imaging 2019; 12: 1673-1683
  • 38 Reid AB, Miller CA, Jovanovic A. et al. Native T1 mapping versus CMR Feature Tracking (FT) derived strain analysis for the assessment of cardiac disease manifestation in Anderson Fabry. J Cardiovasc Magn Reson 2016; 18: 422
  • 39 Nordin S, Kozor R, Bulluck H. et al. Cardiac Fabry disease with late gadolinium enhancement is a chronic inflammatory cardiomyopathy – evidence from multi parametric mapping by cardiovascular magnetic resonance. J Am Coll Cardiol 2016; 68: 1707-1708
  • 40 Perry R, Shah R, Saiedi M. et al. The role of cardiac imaging in the diagnosis and management of Anderson-Fabry disease. JACC Cardiovasc Imaging 2019; 12: 1230-1242
  • 41 Augusto JB, Nordin S, Vijapurapu R. et al. Myocardial edema, myocyte injury, and disease severity in Fabry disease. Circ Cardiovasc Imaging 2020; 13: e010171
  • 42 Messalli G, Imbriaco M, Avitabile G. et al. Role of cardiac MRI in evaluating patients with Anderson-Fabry disease: assessing cardiac effects of long-term enzyme replacement therapy. Radiol Med 2012; 117: 19-28
  • 43 Frustaci A, Verardo R, Grande C. et al. Immune-mediated myocarditis in Fabry disease cardiomyopathy. J Am Heart Assoc 2018; 7: e009052
  • 44 Mathur S, Dreisbach JG, Karur GR. et al. Loss of base-to-apex circumferential strain gradient assessed by cardiovascular magnetic resonance in Fabry disease: Relationship to T1 mapping, late gadolinium enhancement and hypertrophy. J Cardiovasc Magn Reson 2019; 21(1): 45
  • 45 Wilson HC, Ambach S, Madueme PC. et al. Comparison of native T1, strain, and traditional measures of cardiovascular structure and function by cardiac magnetic resonance imaging in patients with Anderson-Fabry disease. Am J Cardiol 2018; 122: 1074-1078
  • 46 Augusto JB, Johner N, Shah D. et al. The myocardial phenotype of Fabry disease pre-hypertrophy and pre-detectable storage. Eur Heart J Cardiovasc Imaging 2021; 790-799
  • 47 Zhao L, Zhang C, Tian J. et al. Quantification of myocardial deformation in patients with Fabry disease by cardiovascular magnetic resonance feature tracking imaging. Cardiovasc Diagn Ther 2021; 11: 91-101
  • 48 Roller FC, Brose A, Richter M. et al. Value of left ventricular feature tracking strain analysis for detection of early cardiac involvement in Fabry disease (FD). J Clin Med 2021; 10: 3734
  • 49 Elliott PM, Kindler H, Shah JS. et al. Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart 2006; 92: 357-360
  • 50 Knott KD, Augusto JB, Nordin S. et al. Quantitative myocardial perfusion in Fabry disease. Circ Cardiovasc Imaging 2019; 12: e008872
  • 51 Tomberli B, Cecchi F, Sciagrà R. et al. Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease. Eur J Heart Fail 2013; 15: 1363-1373
  • 52 Petersen SE, Jerosch-Herold M, Hudsmith LE. et al. Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 2007; 115: 2418-2425
  • 53 Boentert M, Florian A, Dräger B. et al. Pattern and prognostic value of cardiac involvement in patients with late-onset pompe disease: a comprehensive cardiovascular magnetic resonance approach. J Cardiovasc Magn Reson 2016; 18: 91
  • 54 Morris DA, Blaschke D, Krebs A. et al. Structural and functional cardiac analyses using modern and sensitive myocardial techniques in adult Pompe disease. Int J Cardiovasc Imaging 2015; 31: 947-956
  • 55 Mori M, Bailey LA, Estrada J. et al. Severe cardiomyopathy as the isolated presenting feature in an adult with late-onset Pompe disease: A Case Report. JIMD Rep 2017; 31: 79-83
  • 56 Walczak-Galezewska M, Skrypnik D, Szulinska M. et al. Late-onset Pompe disease in a 54 year-old sportsman with an episode of syncope: a case report. Eur Rev Med Pharmacol Sci 2017; 21: 3665-3667
  • 57 Fang T, Wang J, Kang Y. et al. The value of cardiac magnetic resonance imaging in identification of rare diseases mimicking hypertrophic cardiomyopathy. J Clin Med 2021; 10: 3339
  • 58 Dara BS, Rusconi PG, Fishman JE. Danon disease: characteristic late gadolinium enhancement pattern on cardiac magnetic resonance imaging. Cardiol Young 2011; 21: 707-709
  • 59 Piotrowska-Kownacka D, Kownacki L, Kuch M. et al. Cardiovascular magnetic resonance findings in a case of Danon disease. J Cardiovasc Magn Reson 2009; 11(1): 12
  • 60 Tada H, Harimura Y, Yamasaki H. et al. Utility of real-time 3-dimensional echocardiography and magnetic resonance imaging for evaluation of Danon disease. Circulation 2010; 121: 390-392
  • 61 Nucifora G, Miani D, Piccoli G. et al. Cardiac magnetic resonance imaging in Danon disease. Cardiology 2012; 121: 27-30
  • 62 Rigolli M, Kahn AM, Brambatti M. et al. Cardiac magnetic resonance imaging in Danon disease cardiomyopathy. JACC Cardiovasc Imaging 2021; 14: 514-516
  • 63 Vago H, Somloi M, Toth A. et al. Danon disease: a rare cause of left ventricular hypertrophy with cardiac magnetic resonance follow-up. Eur Heart J 2016; 37: 1703
  • 64 Yu L, Wan K, Han Y. et al. A rare phenotype of heterozygous Danon disease mimicking apical hypertrophic cardiomyopathy. Eur Heart J 2018; 39: 3263-3264
  • 65 Miani D, Taylor M, Mestroni L. et al. Sudden death associated with danon disease in women. Am J Cardiol 2012; 109: 406-411
  • 66 Pöyhönen P, Hiippala A, Ollila L. et al. Cardiovascular magnetic resonance findings in patients with PRKAG2 gene mutations. J Cardiovasc Magn Reson 2015; 17: 89
  • 67 Fabris E, Brun F, Porto AG. et al. Cardiac hypertrophy, accessory pathway, and conduction system disease in an adolescent: the PRKAG2 cardiac syndrome. J Am Coll Cardiol 2013; 62: e17
  • 68 Yogasundaram H, Paterson ID, Graham M. et al. Glycogen storage disease because of a PRKAG2 mutation causing severe biventricular hypertrophy and high-grade atrio-ventricular block. Circ Heart Fail 2016; 9: e003367
  • 69 Yang KQ, Lu CX, Zhang Y. et al. A novel PRKAG2 mutation in a Chinese family with cardiac hypertrophy and ventricular pre-excitation. Sci Rep 2017; 7: 2407
  • 70 Sternick EB, de Almeida Araújo S, Rocha C. et al. Myocardial infarction in a teenager. Eur Heart J 2014; 35: 1558
  • 71 Chan RH, Maron BJ, Olivotto I. et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 2014; 130: 484-495
  • 72 Lyo S, Miles J, Meisner J. et al. Case report: adult-onset manifesting heterozygous glycogen storage disease type IV with dilated cardiomyopathy and absent late gadolinium enhancement on cardiac magnetic resonance imaging. Eur Heart J Case Rep 2020; 4: 1-6
  • 73 Zhou J, Lin J, Leung WT. et al. A basic understanding of mucopolysaccharidosis: Incidence, clinical features, diagnosis, and management. Intractable Rare Dis Res 2020; 9: 1-9
  • 74 Fesslová V, Corti P, Sersale G. et al. The natural course and the impact of therapies of cardiac involvement in the mucopolysaccharidoses. Cardiol Young 2009; 19: 170-178
  • 75 Braunlin EA, Harmatz PR, Scarpa M. et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J Inherit Metab Dis 2011; 34: 1183-1197
  • 76 Leal GN, de Paula AC, Leone C. et al. Echocardiographic study of paediatric patients with mucopolysaccharidosis. Cardiol Young 2010; 20: 254-261
  • 77 Mostefa-Kara Μ, Groote P, Abboud G. et al. Cardiac magnetic resonance imaging of mucopolysaccharidosis type II cardiomyopathy. Intern J Cardiol 2011; 147: 170-171
  • 78 Abrahamov A, Elstein D, Gross-Tsur V. et al. Gaucher’s disease variant characterised by progressive calcification of heart valves and unique genotype. Lancet 1995; 346: 1000-1003
  • 79 Benbassat J, Bassan H, Milwidsky H. et al. Constrictive pericarditis in Gaucher’s disease. Am J Med 1968; 44: 647-652
  • 80 Smith RL, Hutchins GM, Sack GH. et al. Unusual cardiac, renal and pulmonary involvement in Gaucher’s disease. Intersitial glucocerebroside accumulation, pulmonary hypertension and fatal bone marrow embolization. Am J Med 1978; 65: 352-360
  • 81 Roghi A, Poggiali E, Cassinerio E. et al. The role of cardiac magnetic resonance in assessing the cardiac involvement in Gaucher type 1 patients: morphological and functional evaluations. J Cardiovasc Med (Hagerstown) 2017; 18: 244-248
  • 82 Solanich X, Claver E, Carreras F. et al. Myocardial infiltration in Gaucher’s disease detected by cardiac MRI. Int J Cardiol 2012; 155: 5-6
  • 83 Spada M, Chiappa E, Ponzone A. Cardiac response to enzyme-replacement therapy in Gaucher’s disease. N Engl J Med 1998; 339: 1165-1166
  • 84 Cerrato F, Pacileo G, Limongelli G. et al. A standard echocardiographic and tissue Doppler study of morphological and functional findings in children with hypertrophic cardiomyopathy compared to those with left ventricular hypertrophy in the setting of Noonan and LEOPARD syndromes. Cardiol Young 2008; 18: 575-580
  • 85 Limongelli G, Pacileo G, Marino B. et al. Prevalence and clinical significance of cardiovascular abnormalities in patients with the LEOPARD syndrome. Am J Cardiol 2007; 100: 736-741
  • 86 Calcagni G, Gagliostro G, Limongelli G. et al. Atypical cardiac defects in patients with RASopathies: updated data on CARNET study. Birth Defects Res 2020; 112: 725-731
  • 87 Monda E, Rubino M, Lioncino M. et al. Hypertrophic cardiomyopathy in children: pathophysiology, diagnosis, and treatment of non-sarcomeric causes. Front Pediatr 2021; 9: 632293
  • 88 Nishikawa T, Ishiyama S, Shimojo T. et al. Hypertrophic cardiomyopathy in Noonan syndrome. Acta Paediatr Jpn 1996; 38: 91-98
  • 89 Roberts AE, Allanson JE, Tartaglia M. et al. Noonan syndrome. Lancet 2013; 381: 333-342
  • 90 Gripp KW, Lin AE. Costello syndrome: a Ras/mitogen activated protein kinase pathway syndrome (rasopathy) resulting from HRAS germline mutations. Genet Med 2012; 14: 285-292
  • 91 Hudsmith LE, Petersen SE, Francis JM. et al. Hypertrophic cardiomyopathy in Noonan syndrome closely mimics familial hypertrophic cardiomyopathy due to sarcomeric mutations. Int J Cardiovasc Imaging 2006; 22: 493-495
  • 92 O’Neill AC, McDermott S, Ridge CA. et al. Investigation of cardiomyopathy using cardiac magnetic resonance imaging part 2: Rare phenotypes. World J Cardiol 2012; 4: 173-182
  • 93 Menon S, Pierpont ME, Driscoll D. Giant cell aortitis and Noonan syndrome. Congenit Heart Dis 2008; 3: 291-294
  • 94 Patel AM, Kim JB, Roberts AE. et al. Double-chambered right ventricle in an adult with Noonan syndrome. Cardiol Rev 2006; 14: 16-20
  • 95 Gu YW, Poste J, Kunal M. et al. Cardiovascular manifestations of pheochromocytoma. Cardiol Rev 2017; 25: 215-222
  • 96 Zhang R, Gupta D, Albert SG. Pheochromocytoma as a reversible cause of cardiomyopathy: analysis and review of the literature. Int J Cardiol 2017; 249: 319-323
  • 97 Y-Hassan S. Clinical features and outcome of pheochromocytoma-induced Takotsubo syndrome: analysis of 80 Published Cases. Am J Cardiol 2016; 117: 1836-1844
  • 98 Di Valentino M, Balestra GM, Christ M. et al. Inverted Takotsubo cardiomyopathy due to pheochromocytoma. Eur Heart J 2008; 29: 830
  • 99 Huddle KR, Kalliatakis B, Skoularigis J. Pheochromocytoma associated with clinical and echocardiographic features simulating hypertrophic obstructive cardiomyopathy. Chest 1996; 109: 1394-1397
  • 100 Park JH, Kim KS, Sul JY. et al. Prevalence and patterns of left ventricular dysfunction in patients with pheochromocytoma. J Cardiovasc Ultrasound 2011; 19: 76-82
  • 101 Ferreira VM, Marcelino M, Piechnik SK. et al. Pheochromocytoma Is characterized by catecholamine-mediated myocarditis, focal and diffuse myocardial fibrosis, and myocardial dysfunction. J Am Coll Cardiol 2016; 67: 2364-2374
  • 102 Roghi A, Pedrotti P, Milazzo A. et al. Adrenergic myocarditis in pheochromocytoma. J Cardiovasc Magn Reson 2011; 13(1): 4
  • 103 De Lazzari M, Cipriani A, Marra MP. et al. Heart failure due to adrenergic myocardial toxicity from a pheochromocytoma. Circ Heart Fail 2015; 8: 646-648
  • 104 Higuchi S, Ota H, Ueda T. et al. 3T MRI evaluation of regional catecholamine-producing tumor-induced myocardial injury. Endocr Connect 2019; 8: 454-461
  • 105 Gervais MK, Gagnon A, Henri M. et al. Pheochromocytoma presenting as inverted Takotsubo cardiomyopathy: a case report and review of the literature. J Cardiovasc Med (Hagerstown) 2015; 16: 113-117
  • 106 Nam MCY, Di Marco A, Ausami A. et al. Demarcation of transient regional myocardial edema in endocrinopathy-induced Takotsubo cardiomyopathy on cardiac magnetic resonance T1 mapping. Can J Cardiol 2020; 36: 968
  • 107 de Miguel V, Arias A, Paissan A. et al. Catecholamine-induced myocarditis in pheochromocytoma. Circulation 2014; 129: 1348-1349
  • 108 Sanna GD, Talanas G, Fiore G. et al. Pheochromocytoma presenting as an acute coronary syndrome complicated by acute heart failure: The challenge of a great mimic. J Saudi Heart Assoc 2016; 28: 278-282
  • 109 De Backer TL, De Buyzere ML, Taeymans Y. et al. Cardiac involvement in pheochromocytoma. J Hum Hypertens 2000; 14: 469-471
  • 110 Santos JRU, Brofferio A, Viana B. et al. Catecholamine-induced cardiomyopathy in pheochromocytoma: how to manage a rare complication in a rare disease?. Horm Metab Res 2019; 51: 458-469
  • 111 Martínez A, Gallo-Bernal S, Acosta SC. et al. Biventricular Takotsubo cardiomyopathy as the initial manifestation of a pheochromocytoma. CASE (Phila) 2021; 5: 363-367
  • 112 Gravina M, Casavecchia G, D’Alonzo N. et al. Pheochromocytoma mimicking Takotsubo cardiomyopathy and hypertrophic cardiomyopathy: a cardiac magnetic resonance study. Am J Emerg Med 2017; 35: 353-355
  • 113 Khattak S, Sim I, Dancy L. et al. Phaeochromocytoma found on cardiovascular magnetic resonance in a patient presenting with acute myocarditis: an unusual association. BMJ Case Rep. 2018 bcr2017222621
  • 114 Wong TS, Bejar S, Michelin P. et al. MR imaging of catecholamine-mediated myocarditis complicated by left ventricular thrombus. Diagn Interv Imaging 2018; 99: 337-338
  • 115 Ng P, Deepak D, Teo L. et al. Asymptomatic phaeochromocytoma in a patient with Holt-Oram syndrome: a case report. Eur Heart J Case Rep 2019; 3: 1-5
  • 116 Fraser LA, Kiaii B, Shaban J. et al. Cardiac pheochromocytoma presenting during pregnancy. BMJ Case Rep. 2010 bcr0420102890
  • 117 Thomas JD, Dattani A, Zemrak F. et al. Characterisation of myocardial structure and function in adult-onset growth hormone deficiency using cardiac magnetic resonance. Endocrine 2016; 54: 778-787
  • 118 Dattani A, Thomas J, Zemrak F. et al. Cardiovascular changes in patients with adult-onset growth hormone deficiency assessed by CMR. J Cardiovasc Magn Reson 2012; 14: 192
  • 119 Andreassen M, Faber J, Kjaer A. et al. Cardiac function in growth hormone deficient patients before and after 1 year with replacement therapy: a magnetic resonance imaging study. Pituitary 2011; 14: 1-10
  • 120 De Cobelli F, Rossini A, Esposito A. et al. Short-term evaluation of cardiac morphology, function, metabolism and structure following diagnosis of adult-onset growth hormone deficiency. Growth Horm IGF Res 2019; 46-47: 50-54
  • 121 Gonzalez S, Windram JD, Sathyapalan T. et al. Effects of human recombinant growth hormone on exercise capacity, cardiac structure, and cardiac function in patients with adult-onset growth hormone deficiency. J Int Med Res 2017; 45: 1708-1719
  • 122 de Boer H, Blok GJ, Voerman HJ. et al. Serum lipid levels in growth hormone-deficient men. Metabolism 1994; 43: 199-203
  • 123 Ramos-Leví AM, Marazuela M. Cardiovascular comorbidities in acromegaly: an update on their diagnosis and management. Endocrine 2017; 55: 346-359
  • 124 Guo X, Cao Y, Cao J. et al. Reversibility of cardiac involvement in acromegaly patients after surgery: 12-month follow-up using cardiovascular magnetic resonance. Front Endocrinol (Lausanne) 2020; 11: 598948
  • 125 Guo X, Cao J, Liu P. et al. Cardiac abnormalities in acromegaly patients: a cardiac magnetic resonance study. Int J Endocrinol 2020; 2018464
  • 126 Bogazzi F, Lombardi M, Strata E. et al. High prevalence of cardiac hypertophy without detectable signs of fibrosis in patients with untreated active acromegaly: an in vivo study using magnetic resonance imaging. Clin Endocrinol (Oxf) 2008; 68: 361-368
  • 127 dos Santos Silva CM, Gottlieb I, Volschan I. et al. Low frequency of cardiomyopathy using cardiac magnetic resonance imaging in an acromegaly contemporary cohort. J Clin Endocrinol Metab 2015; 100: 4447-4455
  • 128 Warszawski L, Kasuki L, Sá R. et al. Low frequency of cardiac arrhythmias and lack of structural heart disease in medically-naïve acromegaly patients: a prospective study at baseline and after 1 year of somatostatin analogs treatment. Pituitary 2016; 19: 582-589
  • 129 Gouya H, Vignaux O, Le Roux P. et al. Rapidly reversible myocardial edema in patients with acromegaly: assessment with ultrafast T2 mapping in a single-breath-hold MRI sequence. AJR Am J Roentgenol 2008; 190: 1576-1582
  • 130 Kim MS, Choi HW, Seo YS. et al. Dilated cardiomyopathy in acromegaly: a case report with cardiac MR findings. Investig Magn Reson Imaging 2019; 23: 395-400
  • 131 Mavrogeni S, Markousis-Mavrogenis G, Markussis V. et al. The emerging role of cardiovascular magnetic resonance imaging in the evaluation of metabolic cardiomyopathies. Horm Metab Res 2015; 47: 623-632