Klin Monbl Augenheilkd 2024; 241(06): 744-750
DOI: 10.1055/a-1842-2683
Klinische Studie

Association of Changes in Thickness of Limbal Epithelial and Stroma with Corneal Scars Detected by High-Resolution Anterior Segment Optic Coherence Tomography

Assoziation von Veränderungen der Limbusepithel- und Stromadicke mit Hornhautnarben, detektiert durch hochauflösende optische Kohärenztomografie des vorderen Segments
Hande Guclu
Ophthalmology, Trakya University, Faculty of Medicine, Edirne, Turkey
,
Samira Sattarpanah
Ophthalmology, Trakya University, Faculty of Medicine, Edirne, Turkey
,
Vuslat Gurlu
Ophthalmology, Trakya University, Faculty of Medicine, Edirne, Turkey
› Author Affiliations

Abstract

Aim To investigate the corneal central and limbal thickness in cornea scar patients using high-resolution anterior segment optical coherence tomography (AS-OCT) and to determine the changes in the limbal region due to the corneal scar. Also, to evaluate tear film parameters in scar patients.

Methods Thirty patients with central corneal scar and 30 control subjects. The control subjects were healthy individuals who came to our clinic for routine ophthalmological examination. They were enrolled in this matched case-control study. Central epithelial thickness (ET), stromal thickness (ST), limbal epithelial thickness (LET), and limbal stromal thickness (LST) were analyzed using high-resolution AS-OCT. For evaluation of the ocular surface, the following techniques were used: tear break-up time (BUT) employing standard sterile strips of fluorescein sodium, Schirmer test-I (SCH), and the Ocular Surface Disease Index (OSDI) Questionnaire.

Results The mean central ET of the patient group was 51.5 ± 12.4 µm, while the mean central ET of the control group was 59.2 ± 9.0 µm. There was a statistically significant difference between patients and controls (p = 0.008). The mean LST of the patients was 747.9 ± 115.7 µm, and the mean LST of the controls was 726.3 ± 79.7 µm. There was a statistically significant difference between patients and controls according to BUT (p = 0.009) and SCH (p = 0.04). However, there was no significant difference between OSDI results of patients and controls (p = 0.08).

Conclusion Corneal monitoring with high-resolution AS-OCT is a simple, noninvasive, useful technique for corneal scar patients. Cornea scars cause decreased ET. This result could be associated with lower tear film parameters in scar patients. The scar length is associated with higher intraocular pressure (IOP) values. Decreased LET and increased LST were detected in scar patients.

Zusammenfassung

Ziel Untersuchung der zentralen Hornhaut- und Limbusdicke bei Patienten mit Hornhautnarben mittels hochauflösender Vordersegment-OCT (AS-OCT) und Bestimmung der durch die Hornhautnarbe verursachten Veränderungen der Limbusregion. Auch zur Beurteilung der Tränenfilmparameter bei Narbenpatienten.

Methoden 30 Patienten mit zentraler Hornhautnarbe und 30 Kontrollpersonen. Die Kontrollpersonen waren gesunde Personen, die zur routinemäßigen ophthalmologischen Untersuchung in unsere Klinik kamen. Sie wurden in diese abgestimmte Fall-Kontroll-Studie aufgenommen. Mittels hochauflösender AS-OCT wurden die zentrale Epitheldicke (ET), die Stromadicke (ST) und die limbale Epithel- (LET) und Stromadicke (LST) analysiert. Zur Beurteilung der Augenoberfläche wurden durchgeführt: Tränenaufreißzeit mit standardmäßiger steriler Fluorescein-Natrium-Streifenanwendung, Schirmer-Test I, Ocular-Surface-Disease-Index-Fragebogen (OSDI).

Ergebnisse Die mittlere zentrale ET der Patientengruppe betrug 51,5 ± 12,4 µm, die mittlere zentrale ET der Kontrollgruppe 59,2 ± 9,0 µm. Es gab einen statistisch signifikanten Unterschied zwischen Patienten und Kontrollen (p = 0,008). Die mittlere LST der Patienten betrug 747,9 ± 115,7 µm und die mittlere LST der Kontrollen betrug 726,3 ± 79,7 µm. Es gab einen statistisch signifikanten Unterschied zwischen Patienten und Kontrollen gemäß BUT (p = 0,009), SCH (p = 0,04), jedoch gab es keinen signifikanten Unterschied zwischen den OSDI-Ergebnissen von Patienten und Kontrollen (p = 0,08).

Schlussfolgerung Die Hornhautüberwachung mit hochauflösendem AS-OCT ist eine einfache, nicht invasive und nützliche Technik für Patienten mit Hornhautnarben. Hornhautnarben verursachten eine verringerte Epitheldicke. Dieses Ergebnis könnte mit niedrigeren Tränenfilmparametern bei Narbenpatienten in Verbindung gebracht werden. Die Narbenlänge ist mit höheren IOP-Werten (IOP: Intraokulardruck) verbunden. Bei Narbenpatienten wurden ein vermindertes limbisches Epithel und eine erhöhte Dicke des limbalen Stromas festgestellt.



Publication History

Received: 20 September 2021

Accepted: 03 May 2022

Accepted Manuscript online:
03 May 2022

Article published online:
31 July 2023

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kanellopoulos JA, Asimellis G. In vivo three-dimensional corneal epithelium imaging in normal eyes by anterior-segment optical coherence tomography: a clinical reference study. Cornea 2013; 32: 1493-1498
  • 2 Haberman ID, Lang PZ, Broncano AF. et al. Epithelial remodeling after corneal crosslinking using higher fluence and accelerated treatment time. J Cataract Refract Surg 2018; 44: 306-312
  • 3 Lautert J, Doshi D, Price jr. FW. et al. Corneal Epithelial Remodeling After Standard Epithelium-off Corneal Cross-linking in Keratoconic Eyes. J Refract Surg 2018; 34: 408-412
  • 4 Kanellopoulos JA, Asimellis G. Corneal epithelial remodeling following cataract surgery: three-dimensional investigation with anterior-segment optical coherence tomography. J Refract Surg 2014; 30: 348-353
  • 5 Reinstein DZ, Archer TJ, Gobbe M. et al. Epithelial thickness after hyperopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg 2010; 26: 555-564
  • 6 Reinstein DZ, Carp GI, Archer TJ. et al. LASIK for the Correction of High Hyperopic Astigmatism With Epithelial Thickness Monitoring. J Refract Surg 2017; 33: 314-321
  • 7 Reinstein DZ, Silverman RH, Coleman DJ. High-frequency ultrasound measurement of the thickness of the corneal epithelium. Refract Corneal Surg 1993; 9: 385-387
  • 8 Medeiros CS, Marino GK, Santhiago MR. et al. The Corneal Basement Membranes and Stromal Fibrosis. Invest Ophthalmol Vis Sci 2018; 59: 4044-4053
  • 9 Marino GK, Santhiago MR, Santhanam A. et al. Epithelial basement membrane injury and regeneration modulates corneal fibrosis after pseudomonas corneal ulcers in rabbits. Exp Eye Res 2017; 161: 101-105
  • 10 De Oliveira RC, Wilson SE. Fibrocytes, Wound Healing, and Corneal Fibrosis. Invest Ophthalmol Vis Sci 2020; 61: 28
  • 11 Wang X, Qu M, Li J. et al. Induction of Fibroblast Senescence During Mouse Corneal Wound Healing. Invest Ophthalmol Vis Sci 2019; 60: 3669-3679
  • 12 Torricelli AA, Santhanam A, Wu J. et al. The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res 2016; 142: 110-118
  • 13 Sung MS, Yoon KC. Evaluation of graft-host interface after penetrating keratoplasty using anterior segment optical coherence tomography. Jpn J Ophthalmol 2014; 58: 282-289
  • 14 Utsunomiya T, Hanada K, Muramatsu O. et al. Wound healing process after corneal stromal thinning observed with anterior segment optical coherence tomography. Cornea 2014; 33: 1056-1060
  • 15 Kamma-Lorger CS, Boote C, Hayes S. et al. Collagen ultrastructural changes during stromal wound healing in organ cultured bovine corneas. Exp Eye Res 2009; 88: 953-959 DOI: 10.1016/j.exer.2008.12.005.
  • 16 Martone G, Pichierri P, Franceschini R. et al. In vivo confocal microscopy and anterior segment optical coherence tomography in a case of alternaria keratitis. Cornea 2011; 30: 449-453
  • 17 Celebi AR, Kilavuzoglu AE, Altiparmak UE. et al. The role of anterior segment optical coherence tomography in the management of an intra-corneal foreign body. Springerplus 2016; 5: 1559
  • 18 Soliman W, Nassr MA, Abdelazeem K. et al. Appearance of herpes simplex keratitis on anterior segment optical coherence tomography. Int Ophthalmol 2019; 39: 2923-2928
  • 19 Gasser T, Romano V, Seifarth C. et al. Morphometric characterisation of pterygium associated with corneal stromal scarring using high-resolution anterior segment optical coherence tomography. Br J Ophthalmol 2017; 101: 660-664
  • 20 Sridhar MS, Martin R. Anterior segment optical coherence tomography for evaluation of cornea and ocular surface. Indian J Ophthalmol 2018; 66: 367-372
  • 21 Salomão MQ, Hofling-Lima AL, Lopes BT. et al. Role of the corneal epithelium measurements in keratorefractive surgery. Curr Opin Ophthalmol 2017; 28: 326-336
  • 22 Soliman W, Mohamed TA. Spectral domain anterior segment optical coherence tomography assessment of pterygium and pinguecula. Acta Ophthalmol 2012; 90: 461-465 DOI: 10.1111/j.1755-3768.2010.01994.x.
  • 23 Soliman W, Fathalla AM, El-Sebaity DM. et al. Spectral domain anterior segment optical coherence tomography in microbial keratitis. Graefes Arch Clin Exp Ophthalmol 2013; 251: 549-553
  • 24 Hattori T, Kumakura S, Mori H. et al. Depiction of cavity formation in Terrien marginal degeneration by anterior segment optical coherence tomography. Cornea 2013; 32: 615-618
  • 25 Yamazaki N, Kobayashi A, Yokogawa H. et al. In vivo imaging of radial keratoneuritis in patients with acanthamoeba keratitis by anterior-segment optical coherence tomography. Ophthalmology 2014; 121: 2153-2158
  • 26 Steinberg J, Casagrande MK, Frings A. et al. Screening for Subclinical Keratoconus Using Swept-Source Fourier Domain Anterior Segment Optical Coherence Tomography. Cornea 2015; 34: 1413-1419
  • 27 Konstantopoulos A, Yadegarfar G, Fievez M. et al. In vivo quantification of bacterial keratitis with optical coherence tomography. Invest Ophthalmol Vis Sci 2011; 52: 1093-1097
  • 28 Ma JJ, Tseng SS, Yarascavitch BA. Anterior segment optical coherence tomography for transepithelial phototherapeutic keratectomy in central corneal stromal scarring. Cornea 2009; 28: 927-929
  • 29 Kulikov AN, Maltsev DS, Kudryashova EV. et al. Decreased epithelial to corneal thickness ratio in healthy fellow eyes of patients with unilateral bullous keratopathy. Br J Ophthalmol 2020; 104: 230-234
  • 30 Kanellopoulos AJ, Asimellis G. In vivo 3-dimensional corneal epithelial thickness mapping as an indicator of dry eye: preliminary clinical assessment. Am J Ophthalmol 2014; 157: 63-68
  • 31 Cennamo G, Montorio D, Del Prete S. et al. Anterior-Segment Optical Coherence Tomography and Scanning Electron Microscopy to Evaluate Corneal Epithelial Changes in Patients Undergoing Glaucoma Therapy. Cornea 2018; 37: 1522-1526
  • 32 Wang Q, Lim L, Lim SWY. et al. Comparison of Corneal Epithelial and Stromal Thickness between Keratoconic and Normal Eyes in an Asian Population. Ophthalmic Res 2019; 62: 134-140
  • 33 Maeda N, Nakagawa T, Higashiura R. et al. Evaluation of corneal epithelial and stromal thickness in keratoconus using spectral-domain optical coherence tomography. Jpn J Ophthalmol 2014; 58: 389-395
  • 34 Zemova E, Eppig T, Seitz B. et al. Interaction between topographic/tomographic parameters and dry eye disease in keratoconus patients. Curr Eye Res 2014; 39: 1-8
  • 35 Dogru M, Karakaya H, Ozçetin H. et al. Tear function and ocular surface changes in keratoconus. Ophthalmology 2003; 110: 1110-1118
  • 36 Dogru M, Katakami C, Miyashita M. et al. Visual and tear function improvement after superficial phototherapeutic keratectomy (PTK) for mid-stromal corneal scarring. Eye (Lond) 2000; 14: 779-784
  • 37 Connon CJ, Meek KM. The structure and swelling of corneal scar tissue in penetrating full-thickness wounds. Cornea 2004; 23: 165-171 DOI: 10.1097/00003226-200403000-00010.
  • 38 Lee M, Ahn J. Effects of Central Corneal Stromal Thickness and Epithelial Thickness on Intraocular Pressure Using Goldmann Applanation and Non-Contact Tonometers. PLoS One 2016; 11: e0151868
  • 39 Mehtani A, Agarwal MC, Sharma S. et al. Diagnosis of limbal stem cell deficiency based on corneal epithelial thickness measured on anterior segment optical coherence tomography. Indian J Ophthalmol 2017; 65: 1120-1126
  • 40 Liang Q, Le Q, Cordova DW. et al. Corneal Epithelial Thickness Measured Using Anterior Segment Optical Coherence Tomography as a Diagnostic Parameter for Limbal Stem Cell Deficiency. Am J Ophthalmol 2020; 216: 132-139
  • 41 Kheirkhah A, Coco G, Satitpitakul V. et al. Limbal and Conjunctival Epithelial Thickness in Ocular Graft-Versus-Host Disease. Cornea 2019; 38: 1286-1290 DOI: 10.1097/ICO.0000000000002066.
  • 42 Shojaati G, Khandaker I, Sylakowski K. et al. Compressed Collagen Enhances Stem Cell Therapy for Corneal Scarring. Stem Cells Transl Med 2018; 7: 487-494
  • 43 Funderburgh JL, Funderburgh ML, Du Y. Stem Cells in the Limbal Stroma. Ocul Surf 2016; 14: 113-120 DOI: 10.1016/j.jtos.2015.12.006.