Subscribe to RSS
DOI: 10.1055/a-1811-7171
Zur klinisch-pathologischen Korrelation der mikrobiellen Keratitis und darüber hinaus: Gibt es eine korneale Sepsis?
Article in several languages: deutsch | EnglishZusammenfassung
Mikrobielle, infektiöse, Keratitiden bedingen relevant die Indikation von perforierenden Keratoplastiken. Durch eine akute transplantationsbedürftige Situation ergibt sich eine histopathologische Untersuchung der gesamten Korneadicke. Wenn auch die klinische Diagnose einer infektiösen Keratitis dabei nicht immer zu belegen ist, kann in der Pathologie sehr zur diagnostischen Klärung des klinischen Befundes und der Pathogenese beigetragen werden. Dies gelingt mit dem Einsatz vielfältiger Methoden aus Zytologie, Histochemie, Immunhistologie, Molekularpathologie und selten eingesetzter Elektronenmikroskopie, wodurch es möglich ist, geweblich manifestierte Vor- und Begleiterkrankungen nachzuweisen und die infrage kommenden Erreger anzugeben. Lässt sich eine klinisch-pathologische Korrelation für die Korneaschädigung nicht zufriedenstellend erbringen, stellt sich die Frage, ob ein mutmaßlicher Erreger final gar nicht dafür verantwortlich gewesen ist. Die Pathogenese einer transplantationsbedürftigen Keratitis ist auch experimentell am Menschen bisher nicht vollständig entschlüsselt. Die Entwicklung einer derartigen Keratitis kann zu einer klinischen Symptomatik führen, die auch als „bedrohliche Organdysfunktion“ beschrieben wird, ein Begriff aus der Sepsisforschung. Unter Berücksichtigung aktueller Literatur werden mögliche Übereinstimmungen zwischen Sepsis und mikrobieller Keratitis und ihr Bezug zur Histopathologie diskutiert.
Publication History
Received: 04 January 2022
Accepted: 18 March 2022
Article published online:
20 July 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 Wang J, Hasenfus A, Schirra F. et al. Changing indications for penetrating keratoplasty in Homburg/Saar from 2001 to 2010–histopathology of 1,200 corneal buttons. Graefes Arch Clin Exp Ophthalmol 2013; 251: 797-802 DOI: 10.1007/s00417-012-2117-2.
- 2 Pluzsik MT, Tóth G, Tóth J. et al. Changing trends in penetrating keratoplasty indications at a tertiary eye care center in Budapest, Hungary between 2006 and 2017. Int J Ophthalmol 2020; 13: 1814-1819 DOI: 10.18240/ijo.2020.11.20.
- 3 Gao H, Huang T, Pan Z. et al. Survey report on keratoplasty in China: A 5-year review from 2014 to 2018. PLoS One 2020; 15: e0239939 DOI: 10.1371/journal.pone.0239939.
- 4 Godeiro KD, Coutinho AB, Pereira PR. et al. Histopathological diagnosis of corneal button specimens: an epidemiological study. Ophthalmic Epidemiol 2007; 14: 70-75 DOI: 10.1080/09286580600954330.
- 5 Lin IH, Chang YS, Tseng SH. et al. A comparative, retrospective, observational study of the clinical and microbiological profiles of post-penetrating keratoplasty keratitis. Sci Rep 2016; 6: 32751 DOI: 10.1038/srep32751.
- 6 Soleimani M, Tabatabaei SA, Masoumi A. et al. Infectious keratitis: trends in microbiological and antibiotic sensitivity patterns. Eye (Lond) 2021; 35: 3110-3115 DOI: 10.1038/s41433-020-01378-w.
- 7 Rohilla R, Meena S, Mohanty A. et al. Etiological spectrum of infectious keratitis in the era of MALDI-TOF-MS at a tertiary care hospital. J Family Med Prim Care 2020; 9: 4576-4581 DOI: 10.4103/jfmpc.jfmpc_630_20.
- 8 Cunha AM, Loja JT, Torrão L. et al. A 10-Year Retrospective Clinical Analysis of Fungal Keratitis in a Portuguese Tertiary Centre. Clin Ophthalmol 2020; 14: 3833-3839 DOI: 10.2147/OPTH.S268327.
- 9 Das S, Sharma S, Priyadarshini O. et al. Association between culture results of corneal scrapings and culture and histopathology results of corneal tissues in therapeutic keratoplasty. Cornea 2011; 30: 1003-1006 DOI: 10.1097/ICO.0b013e318206ccf1.
- 10 Younger JR, Johnson RD, Holland GN. et al. Microbiologic and histopathologic assessment of corneal biopsies in the evaluation of microbial keratitis. Am J Ophthalmol 2012; 154: 512-519 DOI: 10.1016/j.ajo.2012.03.014.
- 11 Vemuganti GK, Murthy SI, Das S. Update on pathologic diagnosis of corneal infections and inflammations. Middle East Afr J Ophthalmol 2011; 18: 277-284 DOI: 10.4103/0974-9233.90128.
- 12 Roberts F, Thum CK. Corneal Ulceration. In: Roberts F, Thum CK. eds. Leeʼs ophthalmic Histopathology. 4th ed. London, Heidelberg, New York: Springer; 2021: 441-442
- 13 Gupta N, Tandon R. Investigative modalities in infectious keratitis. Indian J Ophthalmol 2008; 56: 209-213
- 14 Kradin RL, Deshpande V, Iafrate AJ. General Principles in the Diagnosis of Infection. In: Kradin RL. ed. Diagnostic Pathology of infectious Disease. 2nd ed.. Philadelphia, USA: Elsevier; 2018: 6-11
- 15 Tsutsumi Y. Electron Microscopic Study Using Formalin-fixed, Paraffin-embedded Material, with Special Reference to Observation of Microbial Organisms and Endocrine Granules. Acta Histochem Cytochem 2018; 51: 63-71 DOI: 10.1267/ahc.18012.
- 16 Mukherjee S, Zhou X, Rajaiya J. et al. Ultrastructure of adenovirus keratitis. Invest Ophthalmol Vis Sci 2015; 56: 472-477 DOI: 10.1167/iovs.14-15635.
- 17 Curry A. Microbial Ultrastructure. In: Stirling JW, Curry A, Eyden B. eds. Diagnostic Electron Microscopy: A practical Guide to Interpretation and Technique. Chichester, West Sussex, UK: John Wiley & Sons Ltd.; 2013: 181-219
- 18 Ebrahimi KB, Green WR, Grebe R. et al. Acanthamoeba sclerokeratitis. Graefes Arch Clin Exp Ophthalmol 2009; 247: 283-286 DOI: 10.1007/s00417-008-0955-8.
- 19 Green M, Apel A, Stapleton F. Risk factors and causative organisms in microbial keratitis. Cornea 2008; 27: 22-27 DOI: 10.1097/ICO.0b013e318156caf2.
- 20 Meyer JJ, McGhee CN. Acute Corneal Hydrops Complicated by Microbial Keratitis: Case Series Reveals Poor Immediate and Long-Term Prognosis. Cornea 2016; 35: 1019-1022 DOI: 10.1097/ICO.0000000000000883.
- 21 Seitz B, Resch MD, Schlötzer-Schrehardt U. et al. Histopathology and ultrastructure of human corneas after amniotic membrane transplantation. Arch Ophthalmol 2006; 124: 1487-1490 DOI: 10.1001/archopht.124.10.1487.
- 22 Kangas TA, Edelhauser HF, Twining SS. et al. Loss of stromal glycosaminoglycans during corneal edema. Invest Ophthalmol Vis Sci 1990; 31: 1994-2002
- 23 Prokosch V, Gatzioufas Z, Thanos S. et al. Microbiological findings and predisposing risk factors in corneal ulcers. Graefes Arch Clin Exp Ophthalmol 2012; 250: 369-374 DOI: 10.1007/s00417-011-1722-9.
- 24 Basti S, Schmidt C. Vitamin A deficiency. Cornea 2008; 27: 973 DOI: 10.1097/ICO.0b013e318177011a. author reply 973
- 25 Cooney TM, Johnson CS, Elner VM. Keratomalacia caused by psychiatric-induced dietary restrictions. Cornea 2007; 26: 995-997 DOI: 10.1097/ICO.0b013e3180959a5d.
- 26 Kang Y, Zhang H, Hu M. et al. Alterations in the Ocular Surface Microbiome in Traumatic Corneal Ulcer Patients. Invest Ophthalmol Vis Sci 2020; 61: 35 DOI: 10.1167/iovs.61.6.35.
- 27 Hua X, Yuan X, Wilhelmus KR. A fungal pH-responsive signaling pathway regulating Aspergillus adaptation and invasion into the cornea. Invest Ophthalmol Vis Sci 2010; 51: 1517-1523 DOI: 10.1167/iovs.09-4348.
- 28 Vallas V, Stapleton F, Willcox MD. Bacterial invasion of corneal epithelial cells. Aust N Z J Ophthalmol 1999; 27: 228-230 DOI: 10.1046/j.1440-1606.1999.00203.x.
- 29 Taylor PB, Tabbara KF. Peripheral corneal infections. Int Ophthalmol Clin 1986; 26: 29-48 DOI: 10.1097/00004397-198602640-00004.
- 30 Zaidi TS, Zaidi T, Pier GB. et al. Topical neutralization of interleukin-17 during experimental Pseudomonas aeruginosa corneal infection promotes bacterial clearance and reduces pathology. Infect Immun 2012; 80: 3706-3712 DOI: 10.1128/IAI.00249-12.
- 31 Gadjeva M, Nagashima J, Zaidi T. et al. Inhibition of macrophage migration inhibitory factor ameliorates ocular Pseudomonas aeruginosa-induced keratitis. PLoS Pathog 2010; 6: e1000826 DOI: 10.1371/journal.ppat.1000826.
- 32 Jinno A, Park PW. Role of glycosaminoglycans in infectious disease. Methods Mol Biol 2015; 1229: 567-585 DOI: 10.1007/978-1-4939-1714-3_45.
- 33 Park PJ, Shukla D. Role of heparan sulfate in ocular diseases. Exp Eye Res 2013; 110: 1-9 DOI: 10.1016/j.exer.2013.01.015.
- 34 Jinno A, Hayashida A, Jenkinson HF. et al. Syndecan-1 Promotes Streptococcus pneumoniae Corneal Infection by Facilitating the Assembly of Adhesive Fibronectin Fibrils. mBio 2020; 11: e01907-e01920 DOI: 10.1128/mBio.01907-20.
- 35 Jackson BE, Wilhelmus KR, Hube B. The role of secreted aspartyl proteinases in Candida albicans keratitis. Invest Ophthalmol Vis Sci 2007; 48: 3559-3565 DOI: 10.1167/iovs.07-0114.
- 36 Matsumoto K. Role of bacterial proteases in pseudomonal and serratial keratitis. Biol Chem 2004; 385: 1007-1016 DOI: 10.1515/BC.2004.131.
- 37 Vemuganti GK, Reddy K, Iftekhar G. et al. Keratocyte loss in corneal infection through apoptosis: a histologic study of 59 cases. BMC Ophthalmol 2004; 4: 16 DOI: 10.1186/1471-2415-4-16.
- 38 Garreis F, Gottschalt M, Paulsen FP. Antimicrobial peptides as a major part of the innate immune defense at the ocular surface. Dev Ophthalmol 2010; 45: 16-22 DOI: 10.1159/000315016.
- 39 Alfaar AS, Saad AM, KhalafAllah MT. et al. Second primary malignancies of eye and ocular adnexa after a first primary elsewhere in the body. Graefes Arch Clin Exp Ophthalmol 2021; 259: 515-526 DOI: 10.1007/s00417-020-04896-1.
- 40 Kiratli H, Aygün FB, Gedikoğlu G. Corneal Relapse of Peripheral T-Cell Lymphoma Under Systemic Chemotherapy. Cornea 2018; 37: 1593-1595 DOI: 10.1097/ICO.0000000000001759.
- 41 Urwin L, Okurowska K, Crowther G. et al. Corneal Infection Models: Tools to Investigate the Role of Biofilms in Bacterial Keratitis. Cells 2020; 9: 2450 DOI: 10.3390/cells9112450.
- 42 Wilson SE. Coordinated Modulation of Corneal Scarring by the Epithelial Basement Membrane and Descemetʼs Basement Membrane. J Refract Surg 2019; 35: 506-516 DOI: 10.3928/1081597X-20190625-02.
- 43 Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol 2019; 63: 15-22
- 44 Müller RT, Abedi F, Cruzat A. et al. Degeneration and Regeneration of Subbasal Corneal Nerves after Infectious Keratitis: A Longitudinal In Vivo Confocal Microscopy Study. Ophthalmology 2015; 122: 2200-2209 DOI: 10.1016/j.ophtha.2015.06.047.
- 45 Shtein RM, Garcia DD, Musch DC. et al. Herpes simplex virus keratitis: histopathologic inflammation and corneal allograft rejection. Ophthalmology 2009; 116: 1301-1305 DOI: 10.1016/j.ophtha.2009.03.031.
- 46 Schrecker J, Seitz B, Berger T. et al. Malignant Keratitis Caused by a Highly-Resistant Strain of Fusarium Tonkinense from the Fusarium Solani Complex. J Fungi (Basel) 2021; 7: 1093 DOI: 10.3390/jof7121093.
- 47 Lübke J, Auw-Hädrich C, Meyer-Ter-Vehn T. et al. Fusarienkeratitis mit dramatischem Ausgang. Ophthalmologe 2017; 114: 462-465 DOI: 10.1007/s00347-016-0303-z.
- 48 Reynolds MM, Greenwood-Quaintance KE, Patel R. et al. Selected Antimicrobial Activity of Topical Ophthalmic Anesthetics. Transl Vis Sci Technol 2016; 5: 2 DOI: 10.1167/tvst.5.4.2.
- 49 Neidhart B, Kowalska M, Valentin JDP. et al. Tissue Inhibitor of Metalloproteinase (TIMP) Peptidomimetic as an Adjunctive Therapy for Infectious Keratitis. Biomacromolecules 2021; 22: 629-639 DOI: 10.1021/acs.biomac.0c01473.
- 50 Sharma SL. Keratomycosis in corneal sepsis. Indian J Ophthalmol 1981; 29: 443-445
- 51 Watson PG, Gairdner D. TRIC agent as a cause of neonatal eye sepsis. Br Med J 1968; 3: 527-528 DOI: 10.1136/bmj.3.5617.524-a.
- 52 Singer M, Deutschman CS, Seymour CW. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801-810 DOI: 10.1001/jama.2016.0287.
- 53 Ghnewa YG, Fish M, Jennings A. et al. Goodbye SIRS? Innate, trained and adaptive immunity and pathogenesis of organ dysfunction. Med Klin Intensivmed Notfmed 2020; 115 (Suppl. 01) S10-S14 DOI: 10.1007/s00063-020-00683-2.
- 54 van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity 2021; 54: 2450-2464 DOI: 10.1016/j.immuni.2021.10.012.
- 55 Ding R, Meng Y, Ma X. The Central Role of the Inflammatory Response in Understanding the Heterogeneity of Sepsis-3. Biomed Res Int 2018; 2018: 5086516 DOI: 10.1155/2018/5086516.
- 56 Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity 2014; 40: 463-475 DOI: 10.1016/j.immuni.2014.04.001.
- 57 Ehler J, Busjahn C, Schürholz T. Welche Biomarker zu Diagnosestellung und Steuerung der antiinfektiven Therapie bei Sepsis?. Anaesthesist 2022; 71: 3-11 DOI: 10.1007/s00101-021-01067-7.
- 58 Ceydeli A, Condon MR, Siegel JH. The septic abscess wall: a cytokine-generating organ associated with portal venous cytokinemia, hepatic outflow fibrosis, sinusoidal congestion, inflammatory cell sequestration, hepatocellular lipid deposition, and focal cell death. Shock 2003; 20: 74-84 DOI: 10.1097/01.shk.0000065769.72937.2b.
- 59 Lerolle N, Nochy D, Guérot E. et al. Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intensive Care Med 2010; 36: 471-478 DOI: 10.1007/s00134-009-1723-x.
- 60 Kosaka J, Lankadeva YR, May CN. et al. Histopathology of Septic Acute Kidney Injury: A Systematic Review of Experimental Data. Crit Care Med 2016; 44: e897-903 DOI: 10.1097/CCM.0000000000001735.
- 61 Garofalo AM, Lorente-Ros M, Goncalvez G. et al. Histopathological changes of organ dysfunction in sepsis. Intensive Care Med Exp 2019; 7 (Suppl. 01) S45 DOI: 10.1186/s40635-019-0236-3.
- 62 Vasiliauskaitė I, de Jong M, Quilendrino R. et al. Use of Corneas From Septic Donors for Descemet Membrane Endothelial Keratoplasty. Cornea 2021; 40: 33-38 DOI: 10.1097/ICO.0000000000002443.
- 63 Singh T, Arya SK, Handa U. et al. Usability of donor corneas harvested from the deceased having septicaemia or malignancy. QJM 2019; 112: 681-683 DOI: 10.1093/qjmed/hcz143.
- 64 Hortová-Kohoutková M, Lázničková P, Bendíčková K. et al. Differences in monocyte subsets are associated with short-term survival in patients with septic shock. J Cell Mol Med 2020; 24: 12504-12512 DOI: 10.1111/jcmm.15791.
- 65 Stepp MA, Menko AS. Immune responses to injury and their links to eye disease. Transl Res 2021; 236: 52-71 DOI: 10.1016/j.trsl.2021.05.005.
- 66 Song J, Huang YF, Zhang WJ. et al. Ocular diseases: immunological and molecular mechanisms. Int J Ophthalmol 2016; 9: 780-788 DOI: 10.18240/ijo.2016.05.25.
- 67 Guo H, Gao J, Wu X. Toll-like receptor 2 siRNA suppresses corneal inflammation and attenuates Aspergillus fumigatus keratitis in rats. Immunol Cell Biol 2012; 90: 352-357 DOI: 10.1038/icb.2011.49.
- 68 Epstein SP, Chen D, Asbell PA. Evaluation of biomarkers of inflammation in response to benzalkonium chloride on corneal and conjunctival epithelial cells. J Ocul Pharmacol Ther 2009; 25: 415-424 DOI: 10.1089/jop.2008.0140.
- 69 Rodrigues MM, Robey PG. C-reactive protein in human lattice corneal dystrophy. Curr Eye Res 1982 – 1983; 2: 721-724 DOI: 10.3109/02713688209020002.
- 70 Yang RB, Wu LP, Lu XX. et al. Immunologic mechanism of fungal keratitis. Int J Ophthalmol 2021; 14: 1100-1106 DOI: 10.18240/ijo.2021.07.20.
- 71 Sakimoto T, Sawa M. Metalloproteinases in corneal diseases: degradation and processing. Cornea 2012; 31 (Suppl. 01) S50-S56 DOI: 10.1097/ICO.0b013e318269ccd0.
- 72 Guzmán M, Miglio MS, Zgajnar NR. et al. The mucosal surfaces of both eyes are immunologically linked by a neurogenic inflammatory reflex involving TRPV1 and substance P. Mucosal Immunol 2018; 11: 1441-1453 DOI: 10.1038/s41385-018-0040-5.
- 73 Cruzat A, Schrems WA, Schrems-Hoesl LM. et al. Contralateral Clinically Unaffected Eyes of Patients With Unilateral Infectious Keratitis Demonstrate a Sympathetic Immune Response. Invest Ophthalmol Vis Sci 2015; 56: 6612-6620 DOI: 10.1167/iovs.15-16560.