Subscribe to RSS
DOI: 10.1055/a-1801-4696
Synthesis of Carbonyl Compounds by Gold-Catalyzed Carbonylation Reactions
This work was supported by the National Natural Science Foundation of China (Grant Numbers 21802151 and 21972152) and the China Postdoctoral Science Foundation (Grant Number 2020M681146).
Abstract
In recent years, carbonylation reactions has experienced rapid progress and has become the essential and efficient strategies for the large-scale preparation of carbonyl compounds. Although palladium, rhodium, iridium, ruthenium, and cobalt are the dominating catalysis in carbonylation reactions, the gold has emerged as a selectable catalysis in some specific carbonylation reactions in the past two decades. Both homogeneous and heterogeneous gold catalysis have been studied in carbonylation reactions. Herein, we briefly reviewed the history of gold-catalyzed carbonylation reactions, including carbonylation of olefins, methanol, and amines. It also highlights our recent works on synergistic Au/Cu-catalyzed oxidative carbonylation of amines.
1 Introduction
2 Carbonylation of Olefins
3 Carbonylation of Methanol
4 Carbonylation of Amines
4.1 Gold Catalysis
4.2 Bimetallic Au–M catalysis
5 Conclusion and Outlook
Publication History
Received: 02 March 2022
Accepted after revision: 17 March 2022
Accepted Manuscript online:
17 March 2022
Article published online:
25 April 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Herrera RP, Gimeno MC. Chem. Rev. 2021; 121: 8311
- 1b Hutchings GJ. Gold Bull. 2004; 37: 3
- 1c Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
- 2 Bond GC, Sermon PA, Webb G, Buchanan DA, Wells PB. J. Chem. Soc., Chem. Commun. 1973; 444b
- 3 Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett. 1987; 16: 405
- 4 Hutchings GJ. J. Catal. 1985; 96: 292
- 5 Ito Y, Sawamura M, Hayashi T. J. Am. Chem. Soc. 1986; 108: 6405
- 6a Gorin J, Sherry BD, Toste FD. Chem. Rev. 2008; 108: 3351
- 6b Li Z, Brouwer C, He C. Chem. Rev. 2008; 108: 3239
- 6c Zhang Y, Cui X, Shi F, Deng Y. Chem. Rev. 2012; 112: 2467
- 6d Lu Z, Li T, Mudshinge SR, Xu B, Hammond GB. Chem. Rev. 2021; 121: 8452
- 6e Liu X, He L, Liu Y.-M, Cao Y. Acc. Chem. Res. 2014; 47: 793
- 6f Hutchings GJ. ACS Cent. Sci. 2018; 4: 1095
- 6g Witzel S, Hashmi AS. K, Xie J. Chem. Rev. 2021; 121: 8868
- 6h Hopkinson MN, Gee AD, Gouverneur V. Chem. Eur. J. 2011; 17: 8248
- 6i Reyes RL, Iwai T, Sawamura M. Chem. Rev. 2021; 121: 8926
- 6j Ye L.-W, Zhu X.-Q, Sahani RL, Xu Y, Qian P.-C, Liu R.-S. Chem. Rev. 2021; 121: 9039
- 7a Kharasch MS, Isbell HS. J. Am. Chem. Soc. 1930; 52: 2919
- 7b Dell’Amico DB, Labella L, Marchetti F, Samaritani S. Coord. Chem. Rev. 2010; 254: 635
- 7c Sorbelli D, Belpassi L, Tarantelli F, Belanzoni P. Inorg. Chem. 2018; 57: 6161
- 7d Gatineau D, Lesage D, Clavier H, Dossmann H, Chan CH, Milet A, Memboeuf A, Cole RB, Gimbert Y. Dalton Trans. 2018; 47: 15497
- 8 Xu Q, Imamura Y, Fujiwara M, Souma Y. J. Org. Chem. 1997; 62: 1594
- 9 Filardo G, Galia A, Rivetti F, Scialdone O, Silvestri G. Electrochim. Acta 1997; 42: 1961
- 10a Funakawa A, Yamanaka I, Takenaka S, Otsuka K. J. Am. Chem. Soc. 2004; 126: 5346
- 10b Funakawa A, Yamanaka I, Otsuka K. J. Phys. Chem. B 2005; 109: 9140
- 11 Figueiredo MC, Trieu V, Eiden S, Koper MT. M. J. Am. Chem. Soc. 2017; 139: 14693
- 12 Figueiredo MC, Trieu V, Eiden S, Heijl J, Koper MT. M. ACS Catal. 2018; 8: 3087
- 13 Li J, Hu J, Gu Y, Mei F, Li T, Li G. J. Mol. Catal. A: Chem. 2011; 340: 53
- 14 Li J, Hu J, Li G. Catal. Commun. 2011; 12: 1401
- 15 Xu B, Madix RJ, Friend CM. J. Am. Chem. Soc. 2011; 133: 20378
- 16a Zoeller JR, Singleton AH, Tustin GC, Carver DL. US 6506933 2003
- 16b Zoeller JR, Singleton AH, Tustin GC, Carver DL. US 6509293 2003
- 17 Kalck P, Le Berre C, Serp P. Coord. Chem. Rev. 2020; 402: 213078
- 18 Goguet A, Hardacre C, Harvey I, Narasimharao K, Saih Y, Sa J. J. Am. Chem. Soc. 2009; 131: 6973
- 19 Martinez-Ramirez Z, Flores-Escamilla GA, Berumen-España GS, Jimenez-Lam SA, Handy BE, Cardenas-Galindo MG, Sarmiento-Lopez AG, Fierro-Gonzalez JC. Appl. Catal., A 2015; 502: 254
- 20 Almeida K, Chagoya K, Felix A, Jiang T, Le D, Rawal TB, Evans PE, Wurch M, Yamaguchi K, Dowben PA, Bartels L, Rahman TS, Blair RG. J. Phys.: Condens. Matter 2022; 34: 104005
- 21a Cao Y, Zhang X, He L. J. Mol. Catal. (China) 2020; 34: 182
- 21b Cao Y, He L, Xia C. Oxidative Carbonylation of Amines, In The Chemical Transformations of C1 Compounds Weinheim: Wiley-VCH; 2022: 687
- 22 Shi F, Deng Y. Chem. Commun. 2001; 443
- 23 Shi F, Deng Y, Yang H, SiMa T. Chem. Commun. 2001; 345
- 24 Shi F, Deng Y. J. Catal. 2002; 211: 548
- 25 Jin L, Weinberger DS, Melaimi M, Moore CE, Rheingold AL, Bertrand G. Angew. Chem. Int. Ed. 2014; 53: 9059
- 26 Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Commun. 2012; 48: 11733
- 27 Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Green Chem. 2013; 15: 608
- 28 Zhu B, Angelici RJ. J. Am. Chem. Soc. 2006; 128: 14460
- 29a Li Y, Pan WX, Wong WT. J. Cluster Sci. 2002; 13: 223
- 29b Li Y, Wong W.-T. Eur. J. Inorg. Chem. 2003; 2651
- 30 Smirnova ES, Munoz MolinaJ. M, Johnson A, Bandeira NA. G, Bo C, Echavarren AM. Angew. Chem. Int. Ed. 2016; 55: 7487
- 31 Duan H, Zeng Y, Yao X, Xing P, Liu J, Zhao Y. Chem. Mater. 2017; 29: 3671
- 32 Cao Y, Yang JG, Deng Y, Wang S, Liu Q, Shen C, Lu W, Che CM, Chen Y, He L. Angew. Chem. Int. Ed. 2020; 59: 2080
- 33 Cao Y, Huang Y, He L. ChemSusChem 2022; 15: e202102400