Synthesis 2022; 54(14): 3201-3208
DOI: 10.1055/a-1797-5298
paper

Practical Synthesis of Variously Substituted 2,3,4-Benzothiadiazepine 2,2-Dioxides

Bálint Nyulasi
,
Tamara Teski
,
András Gy. Németh
,
Sára Sprőber
,
Gyula Simig
,
Balázs Volk


Dedicated to the memory of the late Professor Ferenc Fülöp (1952–2021)

Abstract

The significant pharmacological activity of 2,3-benzodiazepine-4-ones led to an increased interest in this compound family. However, the literature of the closely related 2,3,4-benzothiadiazepine 2,2-dioxides is rather scarce. Earlier we elaborated a synthesis of 5-aryl congeners variously substituted at the aromatic ring. In the present study, a new synthetic route was investigated via highly versatile intermediates, to extend the reaction to a wider aromatic substitution pattern and to the preparation of 5-alkyl and 5-H derivatives. The essence of this approach is, starting from benzaldehyde acetals, acetophenone and benzophenone ketals, to synthesize ortho-formyl- and ortho-acyl-arylmethanesulfonyl chlorides, which are suitable precursors of the target compounds. The synthesis was implemented as follows: ortho-lithiation of the corresponding acetals and ketals and subsequent treatment with paraformaldehyde, or alternatively in two steps, with DMF or ethyl formate, followed by reduction with NaBH4, led to the corresponding hydroxymethyl derivatives. Reaction of these latter with methanesulfonyl chloride gave mesylates that were used to S-alkylate thiourea to afford S-alkylisothiouronium salts. The final steps of the synthesis were carried out in a telescoped reaction. Treatment of the S-alkylisothiouronium salts with N-chlorosuccinimide resulted in the corresponding arylmethanesulfonyl chlorides. Subsequent reaction with hydrazine hydrate followed by an acidic treatment gave 2,3,4-benzothiadiazepine 2,2-dioxides.

Supporting Information



Publication History

Received: 16 February 2022

Accepted after revision: 14 March 2022

Accepted Manuscript online:
14 March 2022

Article published online:
09 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Halford JO, Raiford RW, Weissmann B. J. Org. Chem. 1961; 26: 1898
  • 2 Wermuth CG, Flammang M. Tetrahedron Lett. 1971; 4293
  • 3 Flammang M, Wermuth CG. Eur. J. Med. Chem. 1976;  11: 83
  • 4 Flammang M. C. R. Seances Acad. Sci., Ser. C 1980; 349 ; Chem. Abstr. 1980, 93, 167330
  • 5 Xia H, Field G, Lan NC, Wang Y, Cai SX. PCT Intern. Pat. Appl. WO 9734878, 1997 ; Chem. Abstr. 1997, 127, 307403.
  • 6 Chaturvedula P, Yeola S, Vig S. US Pat. Appl. US 20020022621, 2002 ; Chem. Abstr. 2002, 136, 200472.
  • 7 Bourguignon J.-J, Lagouge Y, Lugnier C, Klotz E, Macher J.-P, Raboisson P, Schultz D. PCT Intern. Pat. Appl. WO 2002098865, 2002 ; Chem. Abstr. 2002, 138, 14079.
  • 8 De Sarro G, Chimirri A, De Sarro A, Gitto R, Grasso S, Giusti P, Chapman AG. Eur. J. Pharmacol. 1995; 294: 411
  • 9 Gatta F, Piazza D, Del Giudice MR, Massotti M. Farmaco Ed. Sci. 1985; 40: 942 ; Chem. Abstr. 1986, 105, 60584
  • 10 King JF, Hawson A, Huston BL, Dands LJ, Komery J. Can. J. Chem. 1971; 49: 943
  • 11 Fetter J, Bertha F, Molnár B, Volk B, Simig G. J. Heterocycl. Chem. 2015; 52: 1136
  • 12 Fetter J, Bertha F, Molnár B, Simig G, Barkóczy J, Volk B, Lévay G, Gacsályi I, Gigler G, Kompagne H, Markó B, Nagy K, Kiricsi P, Hársing LG, Szénási G. PCT Intern. Pat. Appl. WO 2011039554, 2011 ; Chem. Abstr. 2011, 154, 410044.
  • 13 Hilden L, Huuhtanen T, Rummakko P, Grumann A, Pietikaeinen P. US Pat. Appl. US 20020115872, 2002 ; Chem. Abstr. 2002, 137, 154842.
  • 14 Porcs-Makkay M, Lukács G, Pandur A, Simig G, Volk B. Tetrahedron 2014; 70: 286
  • 15 Lukács G, Porcs-Makkay M, Simig G. Tetrahedron Lett. 2003; 44: 3211
  • 16 Gyűjtő I, Porcs-Makkay M, Lukács G, Pusztai G, Garádi Z, Tóth G, Nyulasi B, Simig G, Volk B. Synth. Commun. 2019; 49: 3475
  • 17 Lukács G, Porcs-Makkay M, Simig G. Eur. J. Org. Chem. 2004; 20: 4130
  • 18 Porcs-Makkay M, Simig G. ARKIVOC 2009; (vi): 167
  • 19 Yang Z, Xu J. Synthesis 2013; 45: 1675
  • 20 Yang Z, Zheng Y, Xu J. Synlett 2013; 24: 2165
  • 21 Jeong JY, Sperry J, Brimble MA. J. Org. Chem. 2019; 84: 11935
  • 22 Hickey DM. B, MacKenzie R, Moody CJ, Rees CW. J. Chem. Soc., Perkin Trans. 1 1987; 921
  • 23 Hartman GD. J. Org. Chem. 1985; 50: 2423
  • 24 Sun B, Zhao C, Ma Q, Wang X. Chinese Pat. Appl. CN 105541712, 2016; Chem. Abstr. 2016, 164, 581774.
  • 25 Brown C, Sargent MV. J. Chem. Soc. C 1969; 1818
  • 26 Zhou W, Bai S, Duan J, Wang Z. Chinese Pat. Appl. CN 106748752, 2017 ; Chem. Abstr. 2017, 167, 100612
  • 27 Sternson LA, Stobaugh JF, Repta AJ. Anal. Biochem. 1985; 144: 233
  • 28 Chiesa MV, Palmer A, Buhr W, Zimmermann PJ, Brehm C, Simon W.-A, Postius S, Kromer W, Zanotti-Gerosa A. PCT Intern. Pat. Appl. WO 2006136552, 2006 ; Chem. Abstr. 2006, 146, 100691.
  • 29 Watanabe T, Soma N. Chem. Pharm. Bull. 1971; 19: 2215
  • 30 Garcia-Garibay MA, Dang H. Org. Biomol. Chem. 2009; 7: 1106
  • 31 Jarvis AG, Whitwood AC, Fairlamb IJ. S. Dalton Trans. 2011; 40: 3695
  • 32 Lohner W, Praefcke K. J. Organomet. Chem. 1981; 205: 167
  • 33 Pinder AR, Smith H. J. Chem. Soc. 1954; 113
  • 34 Nyulasi B, Németh A, Porcs-Makkay M, Kupai J, Lukács G, Simig G, Volk B. Tetrahedron 2017; 73: 298