Planta Med 2022; 88(09/10): 702-720
DOI: 10.1055/a-1795-0562
Biological and Pharmacological Activity
Reviews

Biological Dark Matter Exploration using Data Mining for the Discovery of Antimicrobial Natural Products[ # ]

José Rivera-Chávez
1   Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Corina-Diana Ceapă
1   Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
2   Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
› Institutsangaben
Gefördert durch: Consejo Nacional de Ciencia y Tecnología CF-263977
Gefördert durch: Facultad de Química, Universidad Nacional Autonoma de México PAIP 5000-9145
Gefördert durch: Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México PAPIIT IA201721
Gefördert durch: Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México PAPIIT IA203220
Gefördert durch: Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México PAPIIT IN222220

Abstract

The discovery of novel antimicrobials has significantly slowed down over the last three decades. At the same time, humans rely increasingly on antimicrobials because of the progressive antimicrobial resistance in medical practices, human communities, and the environment. Data mining is currently considered a promising option in the discovery of new antibiotics. Some of the advantages of data mining are the ability to predict chemical structures from sequence data, anticipation of the presence of novel metabolites, the understanding of gene evolution, and the corroboration of data from multiple omics technologies. This review analyzes the state-of-the-art for data mining in the fields of bacteria, fungi, and plant genomic data, as well as metabologenomics. It also summarizes some of the most recent research accomplishments in the field, all pinpointing to innovation through uncovering and implementing the next generation of antimicrobials.

# Dedicated to Professor Dr. A. Douglas Kinghorn on the occasion of his 75th birthday.


Supporting Information



Publikationsverlauf

Eingereicht: 21. Dezember 2021

Angenommen nach Revision: 03. März 2022

Artikel online veröffentlicht:
13. Juni 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nieuwlaat R, Mbuagbaw L, Mertz D, Burrows LL, Bowdish DME, Moja L, Wright GD, Schunemann HJ. Coronavirus disease 2019 and antimicrobial resistance: Parallel and interacting health emergencies. Clin Infect Dis 2021; 72: 1657-1659
  • 2 Rawson TM, Ming D, Ahmad R, Moore LSP, Holmes AH. Antimicrobial use, drug-resistant infections and COVID-19. Nat Rev Microbiol 2020; 18: 409-410
  • 3 Lobie TA, Roba AA, Booth JA, Kristiansen KI, Aseffa A, Skarstad K, Bjoras M. Antimicrobial resistance: A challenge awaiting the post-COVID-19 era. Int J Infect Dis 2021; 111: 322-325
  • 4 Rizvi SG, Ahammad SZ. COVID-19 and antimicrobial resistance: A cross-study. Sci Total Environ 2021; 807: 150873
  • 5 OʼNeill J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. London, UK: Wellcome Collection. Attribution 4.0 International (CC BY 4.0); 2014
  • 6 Piddock LJV. The global antibiotic research and development partnership (GARDP): Researching and developing new antibiotics to meet global public health needs. MedChemComm 2019; 10: 1227-1230
  • 7 Williams AN, Sorout N, Cameron AJ, Stavrinides J. The integration of genome mining, comparative genomics, and functional genetics for biosynthetic gene cluster identification. Front Genet 2020; 11: 600116
  • 8 Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson N, James KD, Harris DE, Quail MA, Kieser H, Harper D. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 2002; 417: 141-147
  • 9 Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis . Nat Biotechnol 2003; 21: 526-531
  • 10 Baltz RH. Molecular beacons to identify gifted microbes for genome mining. J Antibiot 2017; 70: 639-646
  • 11 Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson EI, De Los Santos EL, Yeong M, Cruz-Morales P, Abubucker S. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 2020; 16: 60-68
  • 12 Adamek M, Alanjary M, Ziemert N. Applied evolution: Phylogeny-based approaches in natural products research. Nat Prod Rep 2019; 36: 1295-1312
  • 13 Yan X, Ge H, Huang T, Hindra. Yang D, Teng Q, Crnovčić I, Li X, Rudolf JD, Lohman JR. Strain prioritization and genome mining for enediyne natural products. mBio 2016; 7: e02104-02116
  • 14 Caldera EJ, Chevrette MG, McDonald BR, Currie CR. Local adaptation of bacterial symbionts within a geographic mosaic of antibiotic coevolution. Appl Environ Microbiol 2019; 85: e01580-e01619
  • 15 Mullis MM, Rambo IM, Baker BJ, Reese BK. Diversity, ecology, and prevalence of antimicrobials in nature. Front Microbiol 2019; 10: 2518
  • 16 Hindra. Yang D, Teng Q, Dong LB, Crnovcic I, Huang T, Ge H, Shen B. Genome mining of Streptomyces mobaraensis DSM40847 as a bleomycin producer providing a biotechnology platform to engineer designer bleomycin analogues. Org Lett 2017; 19: 1386-1389
  • 17 Scherlach K, Hertweck C. Mining and unearthing hidden biosynthetic potential. Nat Commun 2021; 12: 3864
  • 18 Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J Med Microbiol 2020; 69: 1040-1048
  • 19 Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft JJJ, van Santen JA, Tracanna V, Suarez Duran HG, Pascal Andreu V, Selem-Mojica N, Alanjary M, Robinson SL, Lund G, Epstein SC, Sisto AC, Charkoudian LK, Collemare J, Linington RG, Weber T, Medema MH. MIBiG 2.0: A repository for biosynthetic gene clusters of known function. Nucleic Acids Res 2020; 48: D454-D458
  • 20 Lasch C, Gummerlich N, Myronovskyi M, Palusczak A, Zapp J, Luzhetskyy A. Loseolamycins: A group of new bioactive alkylresorcinols produced after heterologous expression of a type III PKS from Micromonospora endolithica . Molecules 2020; 25: 4594
  • 21 Styczynski M, Rogowska A, Gieczewska K, Garstka M, Szakiel A, Dziewit L. Genome-based insights into the production of carotenoids by Antarctic bacteria, Planococcus sp. ANT_H30 and Rhodococcus sp. ANT_H53B. Molecules 2020; 25: 4357
  • 22 Salwan R, Sharma V. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res 2020; 231: 126374
  • 23 Belknap KC, Park CJ, Barth BM, Andam CP. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci Rep 2020; 10: 2003
  • 24 Vicente CM, Thibessard A, Lorenzi JN, Benhadj M, Hôtel L, Gacemi-Kirane D, Lespinet O, Leblond P, Aigle B. Comparative genomics among closely related Streptomyces strains revealed specialized metabolite biosynthetic gene cluster diversity. Antibiotics 2018; 7: 86
  • 25 Sivakala KK, Gutiérrez-García K, Arul Jose P, Thinesh T, Anandham R, Barona-Gómez F, Sivakumar N. Desert environments facilitate unique evolution of biosynthetic potential in Streptomyces . Molecules 2021; 26: 588
  • 26 Xu L, Ye KX, Dai WH, Sun C, Xu LH, Han BN. Comparative genomic insights into secondary metabolism biosynthetic gene cluster distributions of marine Streptomyces . Mar Drugs 2019; 17: 498
  • 27 Matroodi S, Siitonen V, Baral B, Yamada K, Akhgari A, Metsä-Ketelä M. Genotyping-guided discovery of persiamycin A from sponge-associated halophilic Streptomonospora sp. PA3. Front Microbiol 2020; 11: 1237
  • 28 Wang X, Zhou H, Chen H, Jing X, Zheng W, Li R, Sun T, Liu J, Fu J, Huo L. Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc Natl Acad Sci U S A 2018; 115: E4255-E4263
  • 29 Zhang W, Ji R, Liu J, Pan Y, Wu LF, Lin W. Two metagenome-assembled genome sequences of magnetotactic bacteria in the order Magnetococcales . Microbiol Resour Announc 2020; 9: e00363-00420
  • 30 Dose B, Niehs SP, Scherlach K, Shahda S, Flórez LV, Kaltenpoth M, Hertweck C. Biosynthesis of sinapigladioside, an antifungal isothiocyanate from Burkholderia symbionts. ChemBioChem 2021; 22: 1920-1924
  • 31 Marter P, Huang S, Brinkmann H, Pradella S, Jarek M, Rohde M, Bunk B, Petersen J. Filling the gaps in the cyanobacterial tree of life-metagenome analysis of Stigonema ocellatum DSM 106950, Chlorogloea purpurea SAG 13.99 and Gomphosphaeria aponina DSM 107014. Genes 2021; 12: 389
  • 32 Romero MF, Gallego D, Lechuga-Jiménez A, Martínez JF, Barajas HR, Hayano-Kanashiro C, Peimbert M, Cruz-Ortega R, Molina-Freaner FE, Alcaraz LD. Metagenomics of mine tailing rhizospheric communities and its selection for plant establishment towards bioremediation. Microbiol Res 2021; 247: 126732
  • 33 Letzel A-C, Pidot SJ, Hertweck C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics 2014; 15: 983
  • 34 Travin DY, Bikmetov D, Severinov K. Translation-targeting RiPPs and where to find them. Front Genet 2020; 11: 226
  • 35 Purushothaman M, Sarkar S, Morita M, Gugger M, Schmidt EW, Morinaka BI. Genome-mining-based discovery of the cyclic peptide tolypamide and TolF, a Ser/Thr forward O-prenyltransferase. Angew Chem Int Ed 2021; 60: 8460-8465
  • 36 Carro L, Castro JF, Razmilic V, Nouioui I, Pan C, Igual JM, Jaspars M, Goodfellow M, Bull AT, Asenjo JA. Uncovering the potential of novel micromonosporae isolated from an extreme hyper-arid Atacama Desert soil. Sci Rep 2019; 9: 4678
  • 37 Morgan KT, Zheng J, McCafferty DG. Discovery of six ramoplanin family gene clusters and the lipoglycodepsipeptide chersinamycin. ChemBioChem 2021; 22: 176-185
  • 38 Dunbar KL, Büttner H, Molloy EM, Dell M, Kumpfmüller J, Hertweck C. Genome editing reveals novel thiotemplated assembly of polythioamide antibiotics in anaerobic bacteria. Angew Chem Int Ed 2018; 57: 14080-14084
  • 39 Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. AntiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49: W29-W35
  • 40 Skinnider MA, Johnston CW, Gunabalasingam M, Merwin NJ, Kieliszek AM, MacLellan RJ, Li H, Ranieri MRM, Webster ALH, Cao MPT, Pfeifle A, Spencer N, To QH, Wallace DP, Dejong CA, Magarvey NA. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat Commun 2020; 11: 6058
  • 41 van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res 2013; 41: W448-W453
  • 42 Agrawal P, Khater S, Gupta M, Sain N, Mohanty D. RiPPMiner: A bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic Acids Res 2017; 45: W80-W88
  • 43 Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, de Bruijn I, Chooi YH, Claesen J, Coates RC, Cruz-Morales P, Duddela S, Dusterhus S, Edwards DJ, Fewer DP, Garg N, Geiger C, Gomez-Escribano JP, Greule A, Hadjithomas M, Haines AS, Helfrich EJ, Hillwig ML, Ishida K, Jones AC, Jones CS, Jungmann K, Kegler C, Kim HU, Kotter P, Krug D, Masschelein J, Melnik AV, Mantovani SM, Monroe EA, Moore M, Moss N, Nutzmann HW, Pan G, Pati A, Petras D, Reen FJ, Rosconi F, Rui Z, Tian Z, Tobias NJ, Tsunematsu Y, Wiemann P, Wyckoff E, Yan X, Yim G, Yu F, Xie Y, Aigle B, Apel AK, Balibar CJ, Balskus EP, Barona-Gomez F, Bechthold A, Bode HB, Borriss R, Brady SF, Brakhage AA, Caffrey P, Cheng YQ, Clardy J, Cox RJ, De Mot R, Donadio S, Donia MS, van der Donk WA, Dorrestein PC, Doyle S, Driessen AJ, Ehling-Schulz M, Entian KD, Fischbach MA, Gerwick L, Gerwick WH, Gross H, Gust B, Hertweck C, Hofte M, Jensen SE, Ju J, Katz L, Kaysser L, Klassen JL, Keller NP, Kormanec J, Kuipers OP, Kuzuyama T, Kyrpides NC, Kwon HJ, Lautru S, Lavigne R, Lee CY, Linquan B, Liu X, Liu W, Luzhetskyy A, Mahmud T, Mast Y, Mendez C, Metsa-Ketela M, Micklefield J, Mitchell DA, Moore BS, Moreira LM, Muller R, Neilan BA, Nett M, Nielsen J, OʼGara F, Oikawa H, Osbourn A, Osburne MS, Ostash B, Payne SM, Pernodet JL, Petricek M, Piel J, Ploux O, Raaijmakers JM, Salas JA, Schmitt EK, Scott B, Seipke RF, Shen B, Sherman DH, Sivonen K, Smanski MJ, Sosio M, Stegmann E, Sussmuth RD, Tahlan K, Thomas CM, Tang Y, Truman AW, Viaud M, Walton JD, Walsh CT, Weber T, van Wezel GP, Wilkinson B, Willey JM, Wohlleben W, Wright GD, Ziemert N, Zhang C, Zotchev SB, Breitling R, Takano E, Glockner FO. Minimum information about a biosynthetic gene cluster. Nat Chem Biol 2015; 11: 625-631
  • 44 Shin J, Park S, Lee JS, Lee EJ, Youn HD. Complete genome sequence and comparative analysis of Streptomyces seoulensis, a pioneer strain of nickel superoxide dismutase. Genes Genomics 2020; 42: 273-281
  • 45 Marques-Bastos SLS, Coelho MLV, de Sousa Santos IN, Farias FM, Francisco MS, Albano RM, Alviano CS, de Freire Bastos MdC. Draft genome sequence of the producer strain of aureocin 4181, an antimicrobial peptide with antagonistic activity against multidrug-resistant staphylococci. J Glob Antimicrob Resist 2020; 23: 331-333
  • 46 Marques-Bastos SLS, Coelho MLV, Ceotto-Vigoder H, Fagundes PC, Almeida GS, Brede DA, Nes IF, de Paiva Brito MAV, de Freire Bastos MdC. Molecular characterization of aureocin 4181: A natural N-formylated aureocin A70 variant with a broad spectrum of activity. Braz J Microbiol 2020; 51: 1527-1538
  • 47 Vougas K, Sakellaropoulos T, Kotsinas A, Foukas GRP, Ntargaras A, Koinis F, Polyzos A, Myrianthopoulos V, Zhou H, Narang S. Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmacol Ther 2019; 203: 107395
  • 48 Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM, Tai H-C, Zakai UI, Mitchell DA. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol 2017; 13: 470-478
  • 49 Kong L, Chen Y, Xu F, Xu M, Li Z, Fang J, Zhang L, Pian C. Mining influential genes based on deep learning. BMC Bioinform 2021; 22: 1-12
  • 50 Skinnider MA, Johnston CW, Edgar RE, Dejong CA, Merwin NJ, Rees PN, Magarvey NA. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. PNAS 2016; 113: E6343-E6351
  • 51 Hao T, Xie Z, Wang M, Liu L, Zhang Y, Wang W, Zhang Z, Zhao X, Li P, Guo Z. An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters. Nat Commun 2019; 10: 3665
  • 52 Culp EJ, Waglechner N, Wang W, Fiebig-Comyn AA, Hsu YP, Koteva K, Sychantha D, Coombes BK, Van Nieuwenhze MS, Brun YV. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 2020; 578: 582-587
  • 53 Zou D, Maina SW, Zhang F, Yan Z, Ding L, Shao Y, Xin Z. Mining new plipastatins and increasing the total yield using CRISPR/Cas9 in genome-modified Bacillus subtilis 1A751. J Agric Food Chem 2020; 68: 11358-11367
  • 54 Wang G, Zhao Z, Ke J, Engel Y, Shi YM, Robinson D, Bingol K, Zhang Z, Bowen B, Louie K, Wang B, Evans R, Miyamoto Y, Cheng K, Kosina S, De Raad M, Silva L, Luhrs A, Lubbe A, Hoyt DW, Francavilla C, Otani H, Deutsch S, Washton NM, Rubin EM, Mouncey NJ, Visel A, Northen T, Cheng JF, Bode HB, Yoshikuni Y. CRAGE enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat Microbiol 2019; 4: 2498-2510
  • 55 Ke J, Robinson D, Wu ZY, Kuftin A, Louie K, Kosina S, Northen T, Cheng JF, Yoshikuni Y. CRAGE-CRISPR facilitates rapid activation of secondary metabolite biosynthetic gene clusters in bacteria. Cell Chem Biol 2021; 29: 1-15
  • 56 Tang X, Li J, Millán-Aguiñaga N, Zhang JJ, OʼNeill EC, Ugalde JA, Jensen PR, Mantovani SM, Moore BS. Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem Biol 2015; 10: 2841-2849
  • 57 Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Ackermann Z, Tran VM, Chiappino-Pepe A, Badran AH, Andrews IW, Chory EJ, Church GM, Brown ED, Jaakkola TS, Barzilay R, Collins JJ. A deep learning approach to antibiotic discovery. Cell 2020; 180: 688-702
  • 58 Melo MCR, Maasch J, de la Fuente-Nunez C. Accelerating antibiotic discovery through artificial intelligence. Commun Biol 2021; 4: 1050
  • 59 Alanjary M, Medema MH. Mining bacterial genomes to reveal secret synergy. J Biol Chem 2018; 293: 19996-19997
  • 60 Sengupta S, Chattopadhyay MK, Grossart H-P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 2013; 4: 47
  • 61 Buijs Y, Zhang SD, Jørgensen KM, Isbrandt T, Larsen TO, Gram L. Enhancement of antibiotic production by co-cultivation of two antibiotic producing marine Vibrionaceae strains. FEMS Microbiol Ecol 2021; 97: fiab041
  • 62 Ward JM, Hodgson JE. The biosynthetic genes for clavulanic acid and cephamycin production occur as a ʼsuper-clusterʼin three Streptomyces . FEMS Microbiol Lett 1993; 110: 239-242
  • 63 Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol Res 2004; 186: 1084-1096
  • 64 Mast Y, Weber T, Gölz M, Ort-Winklbauer R, Gondran A, Wohlleben W, Schinko E. Characterization of the ʼpristinamycin superclusterʼ of Streptomyces pristinaespiralis . Microb Biotechnol 2011; 4: 192-206
  • 65 Arp J, Götze S, Mukherji R, Mattern DJ, García-Altares M, Klapper M, Brock DA, Brakhage AA, Strassmann JE, Queller DC. Synergistic activity of cosecreted natural products from amoebae-associated bacteria. PNAS 2018; 115: 3758-3763
  • 66 Mrak P, Krastel P, Lukančič PP, Tao J, Pistorius D, Moore CM. Discovery of the actinoplanic acid pathway in Streptomyces rapamycinicus reveals a genetically conserved synergism with rapamycin. J Biol Chem 2018; 293: 19982-19995
  • 67 Martinet L, Naômé A, Baiwir D, De Pauw E, Mazzucchelli G, Rigali S. On the risks of phylogeny-based strain prioritization for drug discovery: Streptomyces lunaelactis as a case study. Biomolecules 2020; 10: 1027
  • 68 Del Carratore F, Zych K, Cummings M, Takano E, Medema MH, Breitling R. Computational identification of co-evolving multi-gene modules in microbial biosynthetic gene clusters. Commun Biol 2019; 2: 83
  • 69 Li Y, Steenwyk JL, Chang Y, Wang Y, James TY, Stajich JE, Spatafora JW, Groenewald M, Dunn CW, Hittinger CT. A genome-scale phylogeny of the kingdom Fungi. Curr Biol 2021; 31: 1653-1665
  • 70 Hawksworth DL, Lücking R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 2017; 5 DOI: 10.1128/microbiolspec.FUNK-0052-2016.
  • 71 Hibbett D, Abarenkov K, Kõljalg U, Öpik M, Chai B, Cole J, Wang Q, Crous P, Robert V, Helgason T. Sequence-based classification and identification of Fungi. Mycologia 2016; 108: 1049-1068
  • 72 Frąc M, Hannula SE, Bełka M, Jędryczka M. Fungal biodiversity and their role in soil health. Front Microbiol 2018; 9: 707
  • 73 Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding?. IMA Fungus 2020; 11: 14
  • 74 Chassagne F, Cabanac G, Hubert G, David B, Marti G. The landscape of natural product diversity and their pharmacological relevance from a focus on the Dictionary of Natural Products ® . Phytochem Rev 2019; 18: 601-622
  • 75 Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, Keller NP, Rodrigues F, Goldman GH, Rokas A. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biol 2017; 15: e2003583
  • 76 Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37: 107345
  • 77 Quinn R. Rethinking antibiotic research and development: World War II and the penicillin collaborative. Am J Public Health 2013; 103: 426-434
  • 78 Bo G. Giuseppe Brotzu and the discovery of cephalosporins. Clin Microbiol Infect 2000; 6: 6-8
  • 79 Endo A. A historical perspective on the discovery of statins. Proc Jpn Acad Ser B Phys Biol Sci 2010; 86: 484-493
  • 80 Chun J, Brinkmann V. A mechanistically novel, first oral therapy for multiple sclerosis: The development of fingolimod (FTY720, Gilenya). Discov Med 2011; 12: 213-228
  • 81 Balkovec JM, Hughes DL, Masurekar PS, Sable CA, Schwartz RE, Singh SB. Discovery and development of first in class antifungal caspofungin (CANCIDAS®)-A case study. Nat Prod Rep 2014; 31: 15-34
  • 82 Tran PN, Yen MR, Chiang CY, Lin HC, Chen PY. Detecting and prioritizing biosynthetic gene clusters for bioactive compounds in bacteria and fungi. Appl Microbiol Biotechnol 2019; 103: 3277-3287
  • 83 Hutchings MI, Truman AW, Wilkinson B. Antibiotics: Past, present and future. Curr Opin Microbiol 2019; 51: 72-80
  • 84 Noble RL. The discovery of the vinca alkaloids-chemotherapeutic agents against cancer. Biochem Cell Biol 1990; 68: 1344-1351
  • 85 Oberlies NH, Kroll DJ. Camptothecin and taxol: Historic achievements in natural products research. J Nat Prod 2004; 67: 129-135
  • 86 Hubert J, Nuzillard JM, Renault JH. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept?. Phytochem Rev 2017; 16: 55-95
  • 87 El-Elimat T, Figueroa M, Ehrmann BM, Cech NB, Pearce CJ, Oberlies NH. High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. J Nat Prod 2013; 76: 1709-1716
  • 88 Halabalaki M, Vougogiannopoulou K, Mikros E, Skaltsounis AL. Recent advances and new strategies in the NMR-based identification of natural products. Curr Opin Biotechnol 2014; 25: 1-7
  • 89 Egan JM, van Santen JA, Liu DY, Linington RG. Development of an NMR-based platform for the direct structural annotation of complex natural products mixtures. J Nat Prod 2021; 84: 1044-1055
  • 90 van der Lee TA, Medema MH. Computational strategies for genome-based natural product discovery and engineering in fungi. Fungal Genet Biol 2016; 89: 29-36
  • 91 Sarma V, Hyde KD. A review on frequently occurring fungi in mangroves. Fungal Divers 2001; 8: 1-34
  • 92 Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat Prod Rep 2020; 37: 868-878
  • 93 Keller NP. Fungal secondary metabolism: Regulation, function and drug discovery. Nat Rev Microbiol 2019; 17: 167-180
  • 94 Osbourn A. Secondary metabolic gene clusters: Evolutionary toolkits for chemical innovation. Trends Genet 2010; 26: 449-457
  • 95 Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft JJ, Van Santen JA, Tracanna V, Suarez Duran HG, Pascal Andreu V. MIBiG 2.0: A repository for biosynthetic gene clusters of known function. Nucleic Acids Res 2020; 48: D454-D458
  • 96 Robey MT, Caesar LK, Drott MT, Keller NP, Kelleher NL. An interpreted atlas of biosynthetic gene clusters from 1000 fungal genomes. PNAS 2021; 118: e2020230118
  • 97 Godtfredsen W, Roholt K, Tybring L. Fucidin: A new orally active antibiotic. Lancet 1962; 279: 928-931
  • 98 Fernandes P. Fusidic acid: A bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harb Perspect Med 2016; 6: a025437
  • 99 Novak R, Shlaes DM. The pleuromutilin antibiotics: A new class for human use. Curr Opin Investig Drugs 2010; 11: 182-191
  • 100 Kavanagh F, Hervey A, Robbins WJ. Antibiotic substances from basidiomycetes: VIII. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc Natl Acad Sci U S A 1951; 37: 570-574
  • 101 Yang LP, Keam SJ. Spotlight on retapamulin in impetigo and other uncomplicated superficial skin infections. Am J Clin Dermatol 2008; 9: 411-413
  • 102 Yan K, Madden L, Choudhry AE, Voigt CS, Copeland RA, Gontarek RR. Biochemical characterization of the interactions of the novel pleuromutilin derivative retapamulin with bacterial ribosomes. Antimicrob Agents Chemother 2006; 50: 3875-3881
  • 103 Hesterkamp T. Antibiotics clinical development and pipeline. Curr Top Microbiol Immunol 2016; 398: 447-474
  • 104 Morishita Y, Zhang H, Taniguchi T, Mori K, Asai T. The discovery of fungal polyene macrolides via a postgenomic approach reveals a polyketide macrocyclization by trans-acting thioesterase in fungi. Org Lett 2019; 21: 4788-4792
  • 105 Morishita Y, Aoki Y, Ito M, Hagiwara D, Torimaru K, Morita D, Kuroda T, Fukano H, Hoshino Y, Suzuki M, Taniguchi T, Mori K, Asai T. Genome mining-based discovery of fungal macrolides modified by glycosylphosphatidylinositol (GPI)-ethanolamine phosphate transferase homologues. Org Lett 2020; 22: 5876-5879
  • 106 Parkinson EI, Tryon JH, Goering AW, Ju KS, McClure RA, Kemball JD, Zhukovsky S, Labeda DP, Thomson RJ, Kelleher NL, Metcalf WW. Discovery of the tyrobetaine natural products and their biosynthetic gene cluster via metabologenomics. ACS Chem Biol 2018; 13: 1029-1037
  • 107 Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW, Tsang A, Baker SE. Fueling the future with fungal genomics. Mycology 2011; 2: 192-209
  • 108 Martínez-Cárdenas A, Cruz-Zamora Y, Fajardo-Hernández CA, Villanueva-Silva R, Cruz-García F, Raja HA, Figueroa M. Genome mining and molecular networking-based metabolomics of the marine facultative Aspergillus sp. MEXU 27854. Molecules 2021; 26: 5362
  • 109 Clevenger KD, Bok JW, Ye R, Miley GP, Verdan MH, Velk T, Chen C, Yang K, Robey MT, Gao P, Lamprecht M, Thomas PM, Islam MN, Palmer JM, Wu CC, Keller NP, Kelleher NL. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 2017; 13: 895-901
  • 110 Sukmarini L. Recent advances in discovery of lead structures from microbial natural products: Genomics- and metabolomics-guided acceleration. Molecules 2021; 26: 2542
  • 111 McClure RA, Goering AW, Ju KS, Baccile JA, Schroeder FC, Metcalf WW, Thomson RJ, Kelleher NL. Elucidating the rimosamide-detoxin natural product families and their biosynthesis using metabolite/gene cluster correlations. ACS Chem Biol 2016; 11: 3452-3460
  • 112 Goering AW, McClure RA, Doroghazi JR, Albright JC, Haverland NA, Zhang Y, Ju KS, Thomson RJ, Metcalf WW, Kelleher NL. Metabologenomics: Correlation of microbial gene clusters with metabolites drives discovery of a nonribosomal peptide with an unusual amino acid monomer. ACS Cent Sci 2016; 2: 99-108
  • 113 Montaser R, Kelleher NL. Discovery of the biosynthetic machinery for stravidins, biotin antimetabolites. ACS Chem Biol 2020; 15: 1134-1140
  • 114 Zhang WY, Zhong Y, Yu Y, Shi DF, Huang HY, Tang XL, Wang YH, Chen GD, Zhang HP, Liu CL, Hu D, Gao H, Yao XS. 4-Hydroxy pyridones from heterologous expression and cultivation of the native host. J Nat Prod 2020; 83: 3338-3346
  • 115 Bok JW, Ye R, Clevenger KD, Mead D, Wagner M, Krerowicz A, Albright JC, Goering AW, Thomas PM, Kelleher NL, Keller NP, Wu CC. Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genom 2015; 16: 343
  • 116 Robey MT, Ye R, Bok JW, Clevenger KD, Islam MN, Chen C, Gupta R, Swyers M, Wu E, Gao P, Thomas PM, Wu CC, Keller NP, Kelleher NL. Identification of the first diketomorpholine biosynthetic pathway using FAC-MS technology. ACS Chem Biol 2018; 13: 1142-1147
  • 117 Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci 2005; 78: 431-441
  • 118 Kinghorn AD. Pharmacognosy in the 21st century. J Pharm Pharmacol 2001; 53: 135-148
  • 119 Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D, Copeland L, García-Tabernero A, García-Vargas S, De La Rasilla M, Lalueza-Fox C. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 2012; 99: 617-626
  • 120 Serturner F. Ueber das Morphium, eine neue salifahige Grundlage, und die Mekonsaure als Hauptbestandtheile des Opiums. Ann Phys 1817; 55: 56-89
  • 121 Bucar F, Wube A, Schmid M. Natural product isolation-how to get from biological material to pure compounds. Nat Prod Rep 2013; 30: 525-545
  • 122 Tsugawa H, Rai A, Saito K, Nakabayashi R. Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat Prod Rep 2021; 38: 1729-1759
  • 123 Olivon F, Allard PM, Koval A, Righi D, Genta-Jouve G, Neyts J, Apel C, Pannecouque C, Nothias LF, Cachet X. Bioactive natural products prioritization using massive multi-informational molecular networks. ACS Chem Biol 2017; 12: 2644-2651
  • 124 Wu F. Mining plant genomes for rapid discovery of nature products. Mol Plant 2019; 12: 13
  • 125 Nützmann HW, Osbourn A. Gene clustering in plant specialized metabolism. Curr Opin Biotechnol 2014; 26: 91-99
  • 126 Medema MH, Osbourn A. Computational genomic identification and functional reconstitution of plant natural product biosynthetic pathways. Nat Prod Rep 2016; 33: 951-962
  • 127 Nützmann HW, Huang A, Osbourn A. Plant metabolic clusters–from genetics to genomics. New Phytol 2016; 211: 771-789
  • 128 Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP. Analysis of a chemical plant defense mechanism in grasses. Science 1997; 277: 696-699
  • 129 Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A. A gene cluster for secondary metabolism in oat: Implications for the evolution of metabolic diversity in plants. PNAS 2004; 101: 8233-8238
  • 130 Kautsar SA, Suarez Duran HG, Blin K, Osbourn A, Medema MH. PlantiSMASH: Automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res 2017; 45: W55-W63
  • 131 Polturak G, Osbourn A. The emerging role of biosynthetic gene clusters in plant defense and plant interactions. PLoS Pathog 2021; 17: e1009698