Synthesis 2022; 54(14): 3239-3248
DOI: 10.1055/a-1794-0685
paper

Halocyclobutanol Dehydration En Route to Halocyclobutenes

Petr Oeser
,
Artem Petrenko
,
Tereza Edlová
,
Marek Čubiňák
,
Jakub Koudelka
,
Tomáš Tobrman
This work was supported by the Vysoká Škola Chemicko-technologická v Praze (University of Chemistry and Technology, Prague) (A2_FCHT_2021_074) and the Grantová Agentura České Republiky (Grant Agency of the Czech Republic) (18-12150S).


Abstract

A new method for the preparation of halocyclobutenes is described. The developed process involves the dehydration of halocyclobutanols by using tetrafluoroboric acid–diethyl ether complex in dichloromethane at room temperature. The process allows for high yields of halocyclobutenes to be achieved by using alcohols that do not trigger the formation of isomeric allylic halides.

Supporting Information



Publication History

Received: 05 January 2022

Accepted after revision: 10 March 2022

Accepted Manuscript online:
10 March 2022

Article published online:
02 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gribble GW. Environ. Sci. Pollut. Res. 2000; 7: 37
    • 1b Li C, Shi D. Curr. Med. Chem. 2020; 27: 2335
    • 1c Wang C, Tang S, Cao S. Phytochem. Rev. 2021; 20: 85
  • 2 Kosjek T, Heath E. Halogenated Heterocycles: Synthesis, Application and Environment . Iskra J. Springer-Verlag; Berlin, Heidelberg: 2012: 219-246
  • 3 Kodavanti PR. S, Loganathan BG. Biomarkers in Toxicology, 2nd ed. Gupta RC. Academic Press; Oxford: 2019: 501-518
  • 4 Goralczyk K, Majcher A. Acta Biochim. Pol. 2019; 66: 123
    • 6a Buttard F, Sharma J, Champagne PA. Chem. Commun. 2021; 57: 4071
    • 6b Edlová T, Čubiňák M, Tobrman T. Synthesis 2021; 53: 255
    • 6c Polák P, Váňová H, Dvořák D, Tobrman T. Tetrahedron Lett. 2016; 57: 3684
  • 7 Ibbotson J, Ibhadon AO. Mar. Pollut. Bull. 2010; 60: 1136
  • 8 Chasák J, Šlachtová V, Urban M, Brulíková L. Eur. J. Med. Chem. 2021; 209: 112872
  • 9 Klasen B, Moon ES, Rösch F. Nucl. Med. Biol. 2021; 96-97: 80
  • 10 Misale A, Niyomchon S, Maulide N. Acc. Chem. Res. 2016; 49: 2444
    • 11a Koldobskii AB, Shilova OS, Artyushin OI, Kagramanov ND, Moiseev SK. J. Fluorine Chem. 2020; 231: 109463
    • 11b Koldobskii AB, Shilova OS, Artyushin OI, Moiseev SK. Russ. Chem. Bull. 2017; 66: 2345
    • 11c Koldobskii AB, Solodova EV, Godovikov IA, Kalinin VN. Tetrahedron 2008; 64: 9555
  • 12 Li Y, Liu X, Jiang H, Liu B, Chen Z, Zhou P. Angew. Chem. Int. Ed. 2011; 50: 6341
    • 13a Bai Y.-B, Luo Z, Wang Y, Gao J.-M, Zhang L. J. Am. Chem. Soc. 2018; 140: 5860
    • 13b García-Fernández PD, Izquierdo C, Iglesias-Sigüenza J, Díez E, Fernández R, Lassaletta JM. Chem. Eur. J. 2020; 26: 629
  • 14 Liang R, Jiang H, Zhu S. Chem. Commun. 2015; 51: 5530
    • 15a Allen A, Villeneuve K, Cockburn N, Fatila E, Riddell N, Tam W. Eur. J. Org. Chem. 2008; 4178
    • 15b Burton RR, Tam W. Tetrahedron Lett. 2006; 47: 7185
    • 15c Durham R, Mandel J, Blanchard N, Tam W. Can. J. Chem. 2011; 89: 1494
    • 15d Jordan RW, Villeneuve K, Tam W. J. Org. Chem. 2006; 71: 5830
    • 15e Villeneuve K, Riddell N, Jordan RW, Tsui GC, Tam W. Org. Lett. 2004; 6: 4543
  • 16 Woltering SL, Gawel P, Christensen KE, Thompson AL, Anderson HL. J. Am. Chem. Soc. 2020; 142: 13523
    • 17a Boardman LD, Bagheri V, Sawada H, Negishi E. J. Am. Chem. Soc. 1984; 106: 6105
    • 17b Liu F, Negishi E.-i. Tetrahedron Lett. 1997; 38: 1149
    • 17c Negishi E.-i, Liu F, Choueiry D, Mohamud, Silveira A, Reeves M. J. Org. Chem. 1996; 61: 8325
    • 18a Baumann AN, Eisold M, Didier D. Org. Lett. 2017; 19: 2114
    • 18b Eisold M, Baumann AN, Kiefl GM, Emmerling ST, Didier D. Chem. Eur. J. 2017; 23: 1634
    • 18c Eisold M, Didier D. Angew. Chem. Int. Ed. 2015; 54: 15884
  • 19 Fürstner A, Schlecker A, Lehmann CW. Chem. Commun. 2007; 4277
  • 20 Kasai K, Liu Y, Hara R, Takahashi T. Chem. Commun. 1998; 1989
  • 21 Takachi M, Kita Y, Tobisu M, Fukumoto Y, Chatani N. Angew. Chem. Int. Ed. 2010; 49: 8717
    • 22a Bogachenkov AS, Efremova MM, Ionin BI. Tetrahedron Lett. 2012; 53: 2100
    • 22b Bogachenkov AS, Ionin BI. Russ. J. Gen. Chem. 2012; 82: 2009
  • 23 Alcaide B, Almendros P, Lázaro-Milla C. Adv. Synth. Catal. 2017; 359: 2630
  • 24 Kossler D, Perrin FG, Suleymanov AA, Kiefer G, Scopelliti R, Severin K, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 11490
    • 25a Ivanovsky SA, Dorogov MV, Kravchenko DV, Ivachtchenko AV. Synth. Commun. 2007; 37: 2527
    • 25b Luo C, Zhou Q, Jiang G, He L, Zhang B, Wang X. New J. Chem. 2011; 35: 1128
    • 25c Schmidt AH, Kircher G, Maus S, Bach H. J. Org. Chem. 1996; 61: 2085
    • 26a Dillon JL, Gao Q. J. Org. Chem. 1994; 59: 6868
    • 26b Toshiyuki H, Michiko K, Shinsuke T, Takashi M, Keisuke S. Chem. Lett. 2002; 31: 748
    • 27a Derocque J.-L, Sundermann F.-B, Youssif N, Hanack M. Justus Liebigs Ann. Chem. 1973; 419
    • 27b Patel SC, Smith MW, Mercer JA. M, Suzuki K, Burns NZ. Org. Lett. 2021; 23: 6530
    • 27c Polák P, Tobrman T. Eur. J. Org. Chem. 2019; 957
    • 28a Molander GA, Carey JS. J. Org. Chem. 1995; 60: 4845
    • 28b Behnke NE, Siitonen JH, Chamness SA, Kürti L. Org. Lett. 2020; 22: 5715
    • 28c Stevens SJ, Bérubé A, Wood JL. Tetrahedron 2011; 67: 6479
    • 28d Oeser P, Edlová T, Čubiňák M, Tobrman T. Eur. J. Org. Chem. 2021; 4958
    • 29a Balsamo A, Crotti P, Macchia B, Macchia F. Tetrahedron 1973; 29: 2183
    • 29b Barili PL, Bellucci G, Marioni F, Morelli I, Scartoni V. J. Org. Chem. 1973; 38: 3472
    • 29c Langlois J.-B, Alexakis A. Adv. Synth. Catal. 2010; 352: 447
    • 30a Koudelka J, Tobrman T. Eur. J. Org. Chem. 2021; 3260
    • 30b Edlová T, Dvořáková H, Eigner V, Tobrman T. J. Org. Chem. 2021; 86: 5820
  • 31 Barnier JP, Denis JM, Salaun J, Conia JM. Tetrahedron 1974; 30: 1397
  • 32 Yadav JS, Subba Reddy BV, Anusha B, Subba Reddy UV, Bhadra Reddy VV. Tetrahedron Lett. 2010; 51: 2872
  • 33 Xiang Y, Li Z, Wang L.-N, Yu Z.-X. J. Org. Chem. 2018; 83: 7633
  • 34 Pearson AJ, Ghidu VP. J. Org. Chem. 2004; 69: 8975
  • 35 Barbero M, Buscaino R, Cadamuro S, Dughera S, Gualandi A, Marabello D, Cozzi PG. J. Org. Chem. 2015; 80: 4791
  • 36 Schmidt MA. J. Org. Chem. 2022; 87: 1941
  • 37 Liao L, An R, Li H, Xu Y, Wu J.-J, Zhao X. Angew. Chem. Int. Ed. 2020; 59: 11010
  • 38 Zheng Q, Tang S, Xiong D.-C, Li Q, Ye X.-S. J. Org. Chem. 2020; 85: 9339
  • 39 Fisher KM, Bolshan Y. J. Org. Chem. 2015; 80: 12676
  • 40 Friestad GK, Branchaud BP. Tetrafluoroboric Acid . In Encyclopedia of Reagents for Organic Synthesis . John Wiley & Sons; New York: 2001
  • 41 George SR. D, Frith TD. H, Thomas DS, Harper JB. Org. Biomol. Chem. 2015; 13: 9035
  • 42 Deck LM, Daub GH. J. Org. Chem. 1983; 48: 3577
  • 43 Kawano S.-i, Murai T, Harada T, Tanaka K. Inorg. Chem. 2018; 57: 3913
  • 44 Knapp KM, Goldfuss B, Knochel P. Chem. Eur. J. 2003; 9: 5259
  • 45 Alvarado JI. M, Ertel AB, Stegner A, Stache EE, Doyle AG. Org. Lett. 2019; 21: 9940
  • 46 Tanaka S, Watanabe K, Tanaka Y, Hattori T. Org. Lett. 2016; 18: 2576