Synthesis 2022; 54(14): 3282-3288
DOI: 10.1055/a-1786-1584
paper

Rhodol-Based Fluorescent Probes Used for Fast Response toward ClO and Delayed Determination of H2O2 in Living Cells

Bo Wang
a   Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, P. R. China
,
Lanlan Zhang
a   Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, P. R. China
,
Jianpei Zheng
a   Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, P. R. China
,
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
,
Daliang Li
a   Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & College of Life Sciences, Fujian Normal University, 1 Keji Road, Fuzhou, 350117, P. R. China
› Author Affiliations
We gratefully acknowledge Innovative Research Teams Program II of Fujian Normal University in China (IRTL1703); the Fundamental Research Funds for the Central Universities of China (Grant No. PA2021GDSK0068); the Natural Science Foundation of Fujian Province, China (2021J01205); the Scientific Research Innovation Program ‘Xiyuanjiang River Scholarship’ of College of Life Sciences, Fujian Normal University in China (22FSSK007) for financial support.


Abstract

Reactive oxygen species (ROS), a class of reactive oxidants, play critical roles in signal transduction, cell metabolism, immune defense, and other physiological processes. Abnormally excessive levels of ROS can cause diseases and thus, investigations into the relevant biology and medicine are significant. The behavior of ROS in inflammation has been rarely elucidated. In this work, two ROS fluorescent probes, FS-ROS1 and FS-ROS2 have been designed and synthesized. FS-ROS1 responds rapidly (~1 min) to ClO and gradually (~30 min) to H2O2 with an increase in fluorescence at ~656 nm and 640 nm of more than 100-fold in vitro. At a concentration of 10 μM, FS-ROS1 labels the L929 cell and Raw264.7 cell wells in 30 min with excellent biocompatibility and without washing. After labelling, FS-ROS1 exhibited a rational fluorescence increase upon the addition of 1, 10, 100, and 200 μM of H2O2. Based on these results, inflammatory cells, stimulated with 800 nM dexamethasone and polyIC, showed a higher increase in fluorescence than the control cells. These results suggest that H2O2 and ClO might be important signaling molecules during inflammations.

Supporting Information



Publication History

Received: 25 January 2021

Accepted after revision: 02 March 2022

Accepted Manuscript online:
02 March 2022

Article published online:
19 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lin MT, Beal MF. Nature 2006; 443: 787
  • 2 Adegoke O, Forbes PB. C. Anal. Chim. Acta 2015; 862: 1
  • 3 Samanta S, He Y, Sharma A, Kim J, Pan W, Yang Z, Li J, Yan W, Liu L, Qu J, Kim JS. Chem 2019; 5: 1697
  • 4 Ren M, Zhou K, He L, Lin W. J. Mater. Chem. B 2018; 6: 1716
  • 5 Ashoka AH, Ali F, Tiwari R, Kumari R, Pramanik SK, Das A. ACS Omega 2020; 5: 1730
  • 6 Ma C, Zhong G, Zhao Y, Zhang P, Fu Y, Shen B. Spectrochim. Acta, Part A 2020; 240: 118545
  • 7 Klebanoff SJ. J. Leukocyte Biol. 2005; 77: 598
  • 8 Harrison JE, Schultz J. J. Biol. Chem. 1976; 251: 1371
  • 9 Wei P, Liu L, Wen Y, Zhao G, Xue F, Yuan W, Li R, Zhong Y, Zhang M, Yi T. Angew. Chem. Int. Ed. 2019; 58: 4547
  • 10 Yang B, Chen Y, Shi J. Chem. Rev. 2019; 119: 4881
  • 11 Du J, Shi T, Long S, Chen P, Sun W, Fan J, Peng X. Coord. Chem. Rev. 2021; 427: 213604
  • 12 Zhang Z, Fan J, Du J, Peng X. Coord. Chem. Rev. 2021; 427: 213575
  • 13 Kwon N, Kim D, Swamy KM. K, Yoon J. Coord. Chem. Rev. 2021; 427: 213581
  • 14 Nguyen V.-N, Ha J, Cho M, Li H, Swamy KM. K, Yoon J. Coord. Chem. Rev. 2021; 439: 213936
  • 15 Qi Y.-L, Wang H.-R, Chen L.-L, Guo L, Cao Y.-Y, Yang Y.-S, Duan Y.-T, Zhu H.-L. Coord. Chem. Rev. 2021; 445: 214068
  • 16 Chen X, Wang F, Hyun JY, Wei T, Qiang J, Ren X, Shin I, Yoon J. Chem. Soc. Rev. 2016; 45: 2976
  • 17 Andina D, Leroux J.-C, Luciani P. Chem. Eur. J. 2017; 23: 13549
  • 18 Jiao X, Li Y, Niu J, Xie X, Wang X, Tang B. Anal. Chem. 2018; 90: 533
  • 19 Parvez S, Long MJ. C, Poganik JR, Aye Y. Chem. Rev. 2018; 118: 8798
  • 20 Gao P, Pan W, Li N, Tang B. Chem. Sci. 2019; 10: 6035
  • 21 Wu L, Sedgwick AC, Sun X, Bull SD, He X.-P, James TD. Acc. Chem. Res. 2019; 52: 2582
  • 22 Zheng D.-J, Yang Y.-S, Zhu H.-L. TrAC, Trends Anal. Chem. 2019; 118: 625
  • 23 Mao G.-J, Wang Y.-Y, Dong W.-P, Meng H.-M, Wang Q.-Q, Luo X.-F, Li Y, Zhang G. Spectrochim. Acta, Part A 2021; 249: 119326
  • 24 Mao G.-J, Liang Z.-Z, Bi J, Zhang H, Meng H.-M, Su L, Gong Y.-J, Feng S, Zhang G. Anal. Chim. Acta 2019; 1048: 143
  • 25 Xiong K, Huo F, Zhang Y, Wen Y, Yin C. Anal. Methods 2019; 11: 1751
  • 26 Pang Q, Li T, Yin C, Ma K, Huo F. Analyst 2021; 146: 3361
  • 27 Yuan L, Lin W, Chen H. Biomaterials 2013; 34: 9566
  • 28 Mao GJ, Gao GQ, Liang ZZ, Wang YY, Su L, Wang ZX, Zhang H, Ma QJ, Zhang G. Anal. Chim. Acta 2019; 1081: 184
  • 29 Qu X, Song W, Shen Z. Front. Chem. 2019; 7: 598
  • 30 Han H, He X, Wu M, Huang Y, Zhao L, Xu L, Ma P, Sun Y, Song D, Wang X. Talanta 2020; 217: 121000
  • 31 Wang G, Wang Y, Wang C, Huang C, Jia N. Analyst 2020; 145: 828
  • 32 Chen L, Wu X, Yu H, Wu L, Wang Q, Zhang J, Liu X, Li Z, Yang XF. Anal. Chem. 2021; 93: 14343
  • 33 Jiao S, Zhai J, Yang S, Meng X. Talanta 2021; 222: 121566
  • 34 Zheng A, Liu H, Peng C, Gao X, Xu K, Tang B. Talanta 2021; 226: 122152
  • 35 Poronik YM, Vygranenko KV, Gryko D, Gryko DT. Chem. Soc. Rev. 2019; 48: 5242
  • 36 Liu J, Liang J, Wu C, Zhao Y. Anal. Chem. 2019; 91: 6902
  • 37 Hu JJ, Wong N.-K, Ye S, Chen X, Lu M.-Y, Zhao AQ, Guo Y, Ma AC.-H, Leung AY.-H, Shen J, Yang D. J. Am. Chem. Soc. 2015; 137: 6837
  • 38 Huang Y, Zhang Y, Huo F, Liu Y, Yin C. Dyes. Pigm. 2020; 179: 108387
  • 39 Lan J.-S, Liu L, Zeng R.-F, Qin Y.-H, Liu Y, Jiang X.-Y. Chem. Commun. 2020; 56: 1219
  • 40 Jiang C, Li Y, Yan L, Ye A, He Q, Yao C. Dyes. Pigm. 2022; 198: 109975
  • 41 Jiao X, Huang K, He S, Liu C, Zhao L, Zeng X. Org. Biomol. Chem. 2019; 17: 108
  • 42 Gong J, Liu C, Cai S, He S, Zhao L, Zeng X. Org. Biomol. Chem. 2020; 18: 7656
  • 43 Tong H, Zhang Y, Ma S, Zhang M, Wang N, Wang R, Lou K, Wang W. Chin. Chem. Lett. 2018; 29: 139
  • 44 Zhou Z, Yuan X, Long D, Liu M, Li K, Xie Y. Spectrochim. Acta, Part A 2021; 246: 118927
  • 45 Han J, Chu C, Cao G, Mao W, Wang S, Zhao Z, Gao M, Ye H, Xu X. Bioorg. Chem. 2018; 81: 362
  • 46 Wang WX, Jiang WL, Mao GJ, Tan M, Fei J, Li Y, Li CY. Anal. Chem. 2021; 93: 3301
  • 47 Zhao X.-j, Jiang Y.-r, Chen Y.-x, Yang B.-q, Li Y.-t, Liu Z.-h, Liu C. Spectrochim. Acta, Part A 2019; 219: 509
  • 48 Zhu B, Wu L, Zhang M, Wang Y, Liu C, Wang Z, Duan Q, Jia P. Biosens. Bioelectron. 2018; 107: 218
  • 49 Lin X, Qin W, Chen Y, Bao L, Li N, Wang S, Liu K, Kong F, Yi T. Sens. Actuators, B 2020; 324: 128732
  • 50 Liu L, Jiang L, Yuan W, Liu Z, Liu D, Wei P, Zhang X, Yi T. ACS Sens. 2020; 5: 2457
  • 51 Ding G, Zuo Y, Gai F, Wang X, Gou Z, Lin W. J. Mater. Chem. B 2021; 9: 6836
  • 52 Zuo Y, Wang X, Gou Z, Lin W. Sens. Actuators, B 2021; 344: 130217
  • 53 Song X, Bai S, He N, Wang R, Xing Y, Lv C, Yu F. ACS Sens. 2021; 6: 1228