Rofo 2022; 194(10): 1088-1099
DOI: 10.1055/a-1770-4626
Review

Imaging of the Osteoporotic Spine – Quantitative Approaches in Diagnostics and for the Prediction of the Individual Fracture Risk

Bildgebung der osteoporotischen Wirbelsäule – quantitative Ansätze für die Diagnostik und Abschätzung des individuellen Frakturrisikos
1   Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
2   Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
3   Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
4   TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
3   Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
4   TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Sophia Kronthaler
5   Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Christof Boehm
5   Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Michael Dieckmeyer
3   Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Daniel Vogele
1   Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
,
Christopher Kloth
1   Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
,
Christoph Gerhard Lisson
1   Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
,
Julio Carballido-Gamio
6   Department of Radiology, University of Colorado – Anschutz Medical Campus, Aurora, CO, United States
,
Thomas Marc Link
2   Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
,
Dimitrios Charalampos Karampinos
5   Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
,
Subburaj Karupppasamy
7   Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, Singapore
8   Sobey School of Business, Saint Mary’s University, Halifax, NS, Canada
,
Meinrad Beer
1   Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
,
Roland Krug
2   Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
,
Thomas Baum
3   Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
› Author Affiliations
Supported by: German Society of Musculoskeletal Radiology
Supported by: B. Braun Foundation BBST-D-19–00106
Supported by: Dr.-Ing. Leonhard Lorenz Foundation 968/19
Supported by: Deutsche Forschungsgemeinschaft 432290010
Supported by: H2020 European Research Council 637164 – iBack

Abstract

Osteoporosis is a highly prevalent systemic skeletal disease that is characterized by low bone mass and microarchitectural bone deterioration. It predisposes to fragility fractures that can occur at various sites of the skeleton, but vertebral fractures (VFs) have been shown to be particularly common. Prevention strategies and timely intervention depend on reliable diagnosis and prediction of the individual fracture risk, and dual-energy X-ray absorptiometry (DXA) has been the reference standard for decades. Yet, DXA has its inherent limitations, and other techniques have shown potential as viable add-on or even stand-alone options. Specifically, three-dimensional (3 D) imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), are playing an increasing role. For CT, recent advances in medical image analysis now allow automatic vertebral segmentation and value extraction from single vertebral bodies using a deep-learning-based architecture that can be implemented in clinical practice. Regarding MRI, a variety of methods have been developed over recent years, including magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) that enable the extraction of a vertebral body’s proton density fat fraction (PDFF) as a promising surrogate biomarker of bone health. Yet, imaging data from CT or MRI may be more efficiently used when combined with advanced analysis techniques such as texture analysis (TA; to provide spatially resolved assessments of vertebral body composition) or finite element analysis (FEA; to provide estimates of bone strength) to further improve fracture prediction. However, distinct and experimentally validated diagnostic criteria for osteoporosis based on CT- and MRI-derived measures have not yet been achieved, limiting broad transfer to clinical practice for these novel approaches.

Key Points:

  • DXA is the reference standard for diagnosis and fracture prediction in osteoporosis, but it has important limitations.

  • CT- and MRI-based methods are increasingly used as (opportunistic) approaches.

  • For CT, particularly deep-learning-based automatic vertebral segmentation and value extraction seem promising.

  • For MRI, multiple techniques including spectroscopy and chemical shift imaging are available to extract fat fractions.

  • Texture and finite element analyses can provide additional measures for vertebral body composition and bone strength.

Citation Format

  • Sollmann N, Kirschke JS, Kronthaler S et al. Imaging of the Osteoporotic Spine – Quantitative Approaches in Diagnostics and for the Prediction of the Individual Fracture Risk. Fortschr Röntgenstr 2022; 194: 1088 – 1099

Zusammenfassung

Osteoporose ist eine systemische Skeletterkrankung mit sehr hoher Prävalenz, die durch verminderte Knochensubstanz und mikrostrukturelle Verschlechterung des Knochens gekennzeichnet ist. Osteoporose prädisponiert zu Frakturen, welche an verschiedenen Stellen des Skeletts auftreten können, wobei hierunter Wirbelkörper-Frakturen besonders häufig sind. Präventionsmaßnahmen sowie rechtzeitige Interventionen basieren auf einer zuverlässigen Diagnose sowie einer Abschätzung des individuellen Frakturrisikos, wobei die Doppelröntgen-Absorptiometrie (DXA) seit Jahrzehnten als Referenzstandard gilt. Die DXA-Methode hat jedoch inhärente Limitationen, während andere Techniken ein hohes Potenzial als praktikable ergänzende oder sogar alleinige Alternativen gezeigt haben. Im Speziellen spielen dreidimensionale (3 D) Modalitäten der Bildgebung, wie die Computertomografie (CT) und die Magnetresonanztomografie (MRT), eine zunehmend wichtige Rolle. In Bezug auf die CT erlauben aktuelle Entwicklungen aus dem Bereich der medizinischen Bildanalyse inzwischen eine automatisierte Segmentierung und Extraktion relevanter Maßzahlen einzelner Wirbelkörper unter Verwendung von „Deep-Learning“-Algorithmen, welche in die klinische Praxis implementiert werden können. In Bezug auf die MRT stehen dank der Entwicklungen über die letzten Jahre eine Vielzahl an Methoden zur Verfügung, insbesondere die Magnetresonanzspektroskopie (MRS) sowie die Bildgebung mittels „Chemical Shift Enconding-Based“ Wasser-Fett-Differenzierung zur Gewinnung der „Proton Density Fat Fraction“ (PDFF) eines Wirbelkörpers als vielversprechendem Surrogatmarker der Knochengesundheit. Bildgebungsdaten der CT oder MRT könnten jedoch noch effizienter genutzt werden durch eine Kombination mit fortschrittlichen Analyse-Techniken, wie beispielsweise Texturanalyse (TA; zur räumlich hoch aufgelösten Auswertung des Wirbelkörperaufbaus) oder Finite-Elemente-Analyse (FEA; zur Abschätzung der Knochenstärke) zur weiteren Verbesserung der Frakturvorhersage. Bisweilen konnten jedoch noch keine spezifischen und experimentell validierten Diagnosekriterien für die Osteoporose anhand CT- und MRT-basierter Parameter etabliert werden, was die breitere Translation in die klinische Praxis für diese neuen Ansätze erschwert.

Kernaussagen:

  • Die DXA-Methode stellt den Referenzstandard für die Diagnose und Frakturabschätzung bei Osteoporose dar, hat jedoch wichtige Limitationen.

  • CT- und MRT-basierte Techniken werden zunehmend im Rahmen (opportunistischer) Ansätze genutzt.

  • In Bezug auf die CT ist insbesondere die „Deep-Learning“-basierte automatische Wirbelkörpersegmentierung mit Extraktion von Maßzahlen bedeutsam.

  • Für die MRT stehen vielfältige Techniken inklusive der Spektroskopie und der „Chemical-Shift“-Bildgebung zur Extraktion der „Fat Fraction“ zur Verfügung.

  • Textur- und Finite-Elemente-Analysen können eine zusätzliche Bestimmung des Wirbelkörper-Aufbaus und der Knochenstärke ermöglichen.



Publication History

Received: 02 September 2021

Accepted: 03 February 2022

Article published online:
11 May 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis and Therapy. Osteoporosis prevention, diagnosis, and therapy. Jama 2001; 285: 785-795
  • 2 Hallberg I, Bachrach-Lindstrom M, Hammerby S. et al. Health-related quality of life after vertebral or hip fracture: a seven-year follow-up study. BMC Musculoskelet Disord 2009; 10: 135
  • 3 Bliuc D, Nguyen ND, Milch VE. et al. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. Jama 2009; 301: 513-521
  • 4 Melton 3rd LJ, Atkinson EJ, Cooper C. et al. Vertebral fractures predict subsequent fractures. Osteoporos Int 1999; 10: 214-221
  • 5 Arabi A, Baddoura R, Awada H. et al. Discriminative ability of dual-energy X-ray absorptiometry site selection in identifying patients with osteoporotic fractures. Bone 2007; 40: 1060-1065
  • 6 Maricic M. Use of DXA-based technology for detection and assessment of risk of vertebral fracture in rheumatology practice. Curr Rheumatol Rep 2014; 16: 436
  • 7 Siris ES, Chen YT, Abbott TA. et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Archives of internal medicine 2004; 164: 1108-1112
  • 8 World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 1994; 843: 1-129
  • 9 Yu W, Gluer CC, Fuerst T. et al. Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int 1995; 57: 169-174
  • 10 Bolotin HH. DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 2007; 41: 138-154
  • 11 Promma S, Sritara C, Wipuchwongsakorn S. et al. Errors in Patient Positioning for Bone Mineral Density Assessment by Dual X-Ray Absorptiometry: Effect of Technologist Retraining. J Clin Densitom 2018; 21: 252-259
  • 12 World Health Organization. Assessment of osteoporosis at the primary health care level. Summary Report of a WHO Scientific Group. Geneva: WHO; 2007
  • 13 Hans D, Goertzen AL, Krieg MA. et al. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 2011; 26: 2762-2769
  • 14 Boutroy S, Hans D, Sornay-Rendu E. et al. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int 2013; 24: 77-85
  • 15 Kanis JA, Johnell O, Oden A. et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 2008; 19: 385-397
  • 16 American College of Radiology (2018) ACR–SPR–SSR practice parameter for the performance of musculoskeletal quantitative computed tomography (QCT). American College of Radiology, Reston. Available via (Accessed 7 June 2021) https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf?la
  • 17 Oftadeh R, Perez-Viloria M, Villa-Camacho JC. et al. Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 2015; 137
  • 18 Loffler MT, Sollmann N, Mei K. et al. X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos Int 2019;
  • 19 Link TM, Kazakia G. Update on Imaging-Based Measurement of Bone Mineral Density and Quality. Curr Rheumatol Rep 2020; 22: 13
  • 20 Pfeilschifter J, Diel IJ. Osteoporosis due to cancer treatment: pathogenesis and management. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2000; 18: 1570-1593
  • 21 Hopper KD, Wang MP, Kunselman AR. The use of clinical CT for baseline bone density assessment. Journal of computer assisted tomography 2000; 24: 896-899
  • 22 Link TM, Koppers BB, Licht T. et al. In vitro and in vivo spiral CT to determine bone mineral density: initial experience in patients at risk for osteoporosis. Radiology 2004; 231: 805-811
  • 23 Bauer JS, Henning TD, Mueller D. et al. Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors. Am J Roentgenol American journal of roentgenology 2007; 188: 1294-1301
  • 24 Baum T, Muller D, Dobritz M. et al. BMD measurements of the spine derived from sagittal reformations of contrast-enhanced MDCT without dedicated software. Eur J Radiol 2011; 80: e140-e145
  • 25 Baum T, Muller D, Dobritz M. et al. Converted lumbar BMD values derived from sagittal reformations of contrast-enhanced MDCT predict incidental osteoporotic vertebral fractures. Calcif Tissue Int 2012; 90: 481-487
  • 26 Pickhardt PJ, Lee LJ, del Rio AM. et al. Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res 2011; 26: 2194-2203
  • 27 Weaver AA, Beavers KM, Hightower RC. et al. Lumbar Bone Mineral Density Phantomless Computed Tomography Measurements and Correlation with Age and Fracture Incidence. Traffic Inj Prev 2015; 16 (Suppl. 02) S153-S160
  • 28 McCarthy I. The physiology of bone blood flow: a review. The Journal of bone and joint surgery American volume 2006; 88 (Suppl. 03) 4-9
  • 29 Toelly A, Bardach C, Weber M. et al. Influence of Contrast Media on Bone Mineral Density (BMD) Measurements from Routine Contrast-Enhanced MDCT Datasets using a Phantom-less BMD Measurement Tool. Fortschr Röntgenstr 2017; 189: 537-543
  • 30 Abdullayev N, Neuhaus VF, Bratke G. et al. Effects of Contrast Enhancement on In-Body Calibrated Phantomless Bone Mineral Density Measurements in Computed Tomography. J Clin Densitom 2018; 21: 360-366
  • 31 Damilakis J, Adams JE, Guglielmi G. et al. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. European radiology 2010; 20: 2707-2714
  • 32 Mei K, Schwaiger BJ, Kopp FK. et al. Bone mineral density measurements in vertebral specimens and phantoms using dual-layer spectral computed tomography. Sci Rep 2017; 7: 17519
  • 33 van Hamersvelt RW, Schilham AMR, Engelke K. et al. Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study. European radiology 2017; 27: 4351-4359
  • 34 Roski F, Hammel J, Mei K. et al. Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis. European radiology 2019; 29: 6355-6363
  • 35 Roski F, Hammel J, Mei K. et al. Opportunistic osteoporosis screening: contrast-enhanced dual-layer spectral CT provides accurate measurements of vertebral bone mineral density. European radiology 2021; 31: 3147-3155
  • 36 Sollmann N, Mei K, Riederer I. et al. Low-dose MDCT: evaluation of the impact of systematic tube current reduction and sparse sampling on the detection of degenerative spine diseases. European radiology 2021; 31: 2590-2600
  • 37 Sollmann N, Mei K, Hedderich DM. et al. Multi-detector CT imaging: impact of virtual tube current reduction and sparse sampling on detection of vertebral fractures. European radiology 2019; 29: 3606-3616
  • 38 Loffler MT, Jacob A, Scharr A. et al. Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. European radiology 2021;
  • 39 Loffler MT, Sekuboyina A, Jacob A. et al. A Vertebral Segmentation Dataset with Fracture Grading. Radiol Artif Intell 2020; 2: e190138
  • 40 Loffler MT, Sollmann N, Burian E. et al. Opportunistic Osteoporosis Screening Reveals Low Bone Density in Patients With Screw Loosening After Lumbar Semi-Rigid Instrumentation: A Case-Control Study. Front Endocrinol (Lausanne) 2020; 11: 552719
  • 41 Mookiah MRK, Rohrmeier A, Dieckmeyer M. et al. Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis. Osteoporos Int 2018; 29: 825-835
  • 42 Muehlematter UJ, Mannil M, Becker AS. et al. Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning. European radiology 2019; 29: 2207-2217
  • 43 Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 2003; 33: 744-750
  • 44 Allaire BT, Lu D, Johannesdottir F. et al. Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos Int 2019; 30: 323-331
  • 45 Anitha DP, Baum T, Kirschke JS. et al. Effect of the intervertebral disc on vertebral bone strength prediction: a finite-element study. Spine J 2020; 20: 665-671
  • 46 Sollmann N, Loffler MT, Kronthaler S. et al. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. Journal of magnetic resonance imaging: JMRI 2020;
  • 47 Majumdar S, Thomasson D, Shimakawa A. et al. Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 1991; 22: 111-127
  • 48 Wehrli FW, Ford JC, Attie M. et al. Trabecular structure: preliminary application of MR interferometry. Radiology 1991; 179: 615-621
  • 49 Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. Journal of magnetic resonance imaging: JMRI 2012; 36: 1011-1014
  • 50 Griffith JF, Yeung DK, Antonio GE. et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005; 236: 945-951
  • 51 Baum T, Yap SP, Karampinos DC. et al. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus?. Journal of magnetic resonance imaging: JMRI 2012; 35: 117-124
  • 52 Schwartz AV, Sigurdsson S, Hue TF. et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab 2013; 98: 2294-2300
  • 53 Karampinos DC, Ruschke S, Gordijenko O. et al. Association of MRS-Based Vertebral Bone Marrow Fat Fraction with Bone Strength in a Human In Vitro Model. J Osteoporos 2015; 2015: 152349
  • 54 Li G, Xu Z, Gu H. et al. Comparison of chemical shift-encoded water-fat MRI and MR spectroscopy in quantification of marrow fat in postmenopausal females. Journal of magnetic resonance imaging: JMRI 2017; 45: 66-73
  • 55 Shen W, Gong X, Weiss J. et al. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat. J Obes 2013; 2013: 298675
  • 56 Kuhn JP, Hernando D, Meffert PJ. et al. Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis. European radiology 2013; 23: 3432-3439
  • 57 Zhao Y, Huang M, Ding J. et al. Prediction of Abnormal Bone Density and Osteoporosis From Lumbar Spine MR Using Modified Dixon Quant in 257 Subjects With Quantitative Computed Tomography as Reference. Journal of magnetic resonance imaging: JMRI 2019; 49: 390-399
  • 58 Schmeel FC, Luetkens JA, Enkirch SJ. et al. Proton density fat fraction (PDFF) MR imaging for differentiation of acute benign and neoplastic compression fractures of the spine. European radiology 2018; 28: 5001-5009
  • 59 Chen Y, Guo Y, Zhang X. et al. Bone susceptibility mapping with MRI is an alternative and reliable biomarker of osteoporosis in postmenopausal women. European radiology 2018; 28: 5027-5034
  • 60 Guo Y, Chen Y, Zhang X. et al. Magnetic Susceptibility and Fat Content in the Lumbar Spine of Postmenopausal Women With Varying Bone Mineral Density. Journal of magnetic resonance imaging: JMRI 2018;
  • 61 Manhard MK, Harkins KD, Gochberg DF. et al. 30-Second bound and pore water concentration mapping of cortical bone using 2D UTE with optimized half-pulses. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 2017; 77: 945-950
  • 62 Rajapakse CS, Bashoor-Zadeh M, Li C. et al. Volumetric Cortical Bone Porosity Assessment with MR Imaging: Validation and Clinical Feasibility. Radiology 2015; 276: 526-535
  • 63 Ma YJ, Chen Y, Li L. et al. Trabecular bone imaging using a 3D adiabatic inversion recovery prepared ultrashort TE Cones sequence at 3T. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 2020; 83: 1640-1651
  • 64 Baum T, Rohrmeier A, Syvari J. et al. Anatomical Variation of Age-Related Changes in Vertebral Bone Marrow Composition Using Chemical Shift Encoding-Based Water-Fat Magnetic Resonance Imaging. Front Endocrinol (Lausanne) 2018; 9: 141
  • 65 Sollmann N, Dieckmeyer M, Schlaeger S. et al. Associations Between Lumbar Vertebral Bone Marrow and Paraspinal Muscle Fat Compositions-An Investigation by Chemical Shift Encoding-Based Water-Fat MRI. Front Endocrinol (Lausanne) 2018; 9: 563
  • 66 Burian E, Subburaj K, Mookiah MRK. et al. Texture analysis of vertebral bone marrow using chemical shift encoding-based water-fat MRI: a feasibility study. Osteoporos Int 2019; 30: 1265-1274
  • 67 Dieckmeyer M, Junker D, Ruschke S. et al. Vertebral Bone Marrow Heterogeneity Using Texture Analysis of Chemical Shift Encoding-Based MRI: Variations in Age, Sex, and Anatomical Location. Front Endocrinol (Lausanne) 2020; 11: 555931