RSS-Feed abonnieren
DOI: 10.1055/a-1770-1078
Palladium-Catalyzed Coupling of Biphenyl-2-yl Trifluoromethanesulfonates with Dibromomethane to Access Fluorenes
The work was supported by the National Natural Science Foundation of China (No. 21971196) and the Science and Technology Commission of Shanghai Municipality (19DZ2271500).
Abstract
A facile and efficient method has been developed for the synthesis of fluorenes by Pd-catalyzed C–H alkylation of biphenyl-2-yl trifluoromethanesulfonates. The trifluoromethanesulfonates are more readily available and more environmentally benign than biphenyl iodides, and are advantageous substrates for traceless directing-group-assisted C–H activation. The reaction generates C,C-palladacycles as the key intermediates that form two C(sp2)–C(sp3) bonds through reaction with CH2Br2. The reaction tolerates various functional groups, permitting easy access to a range of fluorene derivatives.
Key words
palladium catalysis - fluorenes - C–H bond activation - biphenyl triflates - dibromomethaneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1770-1078.
- Supporting Information
Publikationsverlauf
Eingereicht: 16. Januar 2022
Angenommen nach Revision: 11. Februar 2022
Accepted Manuscript online:
11. Februar 2022
Artikel online veröffentlicht:
10. März 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a C–H Activation. In Topics in Current Chemistry, Vol. 292. HYu J.-Q, Shi Z. Springer; Heidelberg: 2010
- 1b Zhang Y, Shi G, Yu J.-Q. 2014; 3: 1101
- 1c Miao J, Ge H. Eur. J. Org. Chem. 2015; 2015: 7859
- 1d Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
- 1e Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
- 1f Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 1g Baudoin O. Acc. Chem. Res. 2017; 50: 1114
- 1h He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 1i Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
- 1j Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
- 1k Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
- 1l Wu Z, Cheng C, Zhang Y. Youji Huaxue 2021; 41: 2155
- 1m Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
- 1n Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
- 1o Segawa Y, Maekawa T, Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
- 2a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 2b Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 2c Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 2d Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
- 2e Rej S, Ano Y, Chantani N. Chem. Rev. 2020; 120: 1788
- 3a Vyhivskyi O, Kudashev A, Miyakoshi T, Baudoin O. Chem. Eur. J. 2021; 27: 1231
- 3b Cao L, Hua Y, Cheng H.-G, Zhou Q. Org. Chem. Front. 2021; 8: 3883
- 4a Chaumontet M, Piccardi R, Audic N, Hitce J, Peglion J.-L, Clot E, Baudoin O. J. Am. Chem. Soc. 2008; 130: 15157
- 4b Albicker MR, Cramer N. Angew. Chem. Int. Ed. 2009; 48: 9139
- 4c Rousseaux S, Davi M, Sofack-Kreutzer J, Pierre C, Kefalidis CE, Clot E, Fagnou K, Baudoin O. J. Am. Chem. Soc. 2010; 132: 10706
- 4d Shintani R, Otomo H, Ota K, Hayashi T. J. Am. Chem. Soc. 2012; 134: 7305
- 4e Deng R, Huang Y, Ma X, Li G, Zhu R, Wang B, Kang Y.-B, Gu Z. J. Am. Chem. Soc. 2014; 136: 4472
- 4f Gao D.-W, Yin Q, Gu Q, You S.-L. J. Am. Chem. Soc. 2014; 136: 4841
- 4g Yan J.-X, Li H, Liu X.-W, Shi J.-L, Wang X, Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 4945
- 4h Dyker G. Angew. Chem., Int. Ed. Engl. 1992; 31: 1023
- 4i Dyker G. Angew. Chem., Int. Ed. Engl. 1994; 33: 103
- 4j Wu Z, Ma D, Zhou B, Ji X, Ma X, Wang X, Zhang Y. Angew. Chem. Int. Ed. 2017; 56: 12288
- 4k Gutiérrez-Bonet Á, Juliá-Hernández F, de Luis B, Martin R. J. Am. Chem. Soc. 2016; 138: 6384
- 4l Lu A, Ji X, Zhou B, Wu Z, Zhang Y. Angew. Chem. Int. Ed. 2018; 57: 3233
- 4m Lv W, Wen S, Yu J, Cheng G. Org. Lett. 2018; 20: 4984
- 4n Li W, Chen W, Zhou B, Xu Y, Deng G, Liang Y, Yang Y. Org. Lett. 2019; 21: 2718
- 4o Tan B, Bai L, Ding P, Liu J, Wang Y, Luan X. Angew. Chem. Int. Ed. 2019; 58: 1474
- 4p Cheng C, Zhu Q, Zhang Y. Chem. Commun. 2021; 57: 9700
- 4q Cheng C, Zhang Y. Org. Lett. 2021; 23: 5772
- 4r Wu Z, Jiang H, Zhang Y. Chem. Sci. 2021; 12: 8531
- 4s Wu Z, Wei F, Wan B, Zhang Y. J. Am. Chem. Soc. 2021; 143: 4524
- 4t Wan B, Lu Z, Wu Z, Cheng C, Zhang Y. Org. Lett. 2021; 23: 1269
- 4u Gu Y, Sun X, Wan B, Lu Z, Zhang Y. Chem. Commun. 2020; 56: 10942
- 4v Majdecki M, Niedbała P, Jurczak J. ChemistrySelect 2020; 5: 6424
- 4w Majdecki M, Tyszka-Gumkowska A, Jurczak J. Org. Lett. 2020; 22: 8687
- 4x Majdecki M, Grodek P, Jurczak J. J. Org. Chem. 2021; 86: 995
- 5 Chen D, Shi G, Jiang H, Zhang Y. Org. Lett. 2016; 18: 2130
-
6a
Cornella J,
Zarate C,
Martin R.
Chem. Soc. Rev. 2014; 43: 8081
- 6b Qiu Z, Li C. Chem. Rev. 2020; 120: 10454
- 6c Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
- 6d So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
- 6e Kozhushkov S, Potukuchi HK, Ackermann L. Catal. Sci. Technol. 2013; 3: 562
- 7a Wang J, Zhao J, Gong H. Chem. Commun. 2017; 53: 10180
- 7b Kang K, Huang L, Weix DJ. J. Am. Chem. Soc. 2020; 142: 10634
- 7c Fillion E, Trépanier V. É, Heikkinen JJ, Remorova AA, Carson RJ, Goll JM, Seed A. Organometallics 2009; 28: 3518
- 7d Neely JM, Bezdek MJ, Chirik PJ. ACS Cent. Sci. 2016; 2: 935
- 8a Cai S.-L, Li Y, Yang C, Sheng J, Wang X.-S. ACS Catal. 2019; 9: 10299
- 8b Ferguson DM, Rudolph SR, Kalyani D. ACS Catal. 2014; 4: 2395
- 8c Clemenceau A, Thesmar P, Gicquel M, Le Flohic A, Baudoin O. J. Am. Chem. Soc. 2020; 142: 15355
- 8d Pedroni J, Cramer N. Chem. Commun. 2015; 51: 17647
- 8e Cruz AC. F, Miller ND, Willis MC. Org. Lett. 2007; 9: 4391
- 8f Uryu M, Hiraga T, Koga Y, Saito Y, Murakami K, Itami K. Angew. Chem. Int. Ed. 2020; 59: 6551
- 9a Shi G, Chen D, Jiang H, Zhang Y, Zhang Y. Org. Lett. 2016; 18: 2958
- 9b Pan S, Jiang H, Zhang Y, Chen D, Zhang Y. Org. Lett. 2016; 18: 5192
- 9c Yang S, Zhang Y. Org. Lett. 2021; 23: 7746
- 9d Cheng C, Zuo X, Tu D, Wan B, Zhang Y. Chem. Commun. 2021; 57: 2939
- 9e Cheng C, Tu D, Zuo X, Wu Z, Wan B, Zhang Y. Org. Lett. 2021; 23: 1239
- 9f Shao C, Zhou B, Wu Z, Ji X, Zhang Y. Adv. Synth. Catal. 2018; 360: 887
- 9g Ma D, Shi G, Wu Z, Ji X, Zhang Y. J. Org. Chem. 2018; 83: 1065
- 9h Wan B, Zhang Y. Synthesis 2021; 53: 3299
- 9i Tobisu M, Imoto S, Ito S, Chatani N. J. Org. Chem. 2010; 75: 4835
- 9j Tan B, Liu L, Zheng H, Cheng T, Zhu D, Yang X, Luan X. Chem. Sci. 2020; 11: 10198
- 9k Liu X, Sheng H, Zhou Y, Song Q. Chem. Commun. 2020; 56: 1665
- 9l Xu S, Chen R, Fu Z, Zhou Q, Zhang Y, Wang J. ACS Catal. 2017; 7: 1993
- 9m Larock RC, Tian Q. J. Org. Chem. 1998; 63: 2002
- 9n Larock RC, Doty MJ, Tian Q, Zenner JM. J. Org. Chem. 1997; 62: 7536
- 9o Campo MA, Larock RC. Org. Lett. 2000; 2: 3675
- 9p Campo MA, Larock RC. J. Org. Chem. 2002; 67: 5616
- 9q Masselot D, Charmant JP. H, Gallagher T. J. Am. Chem. Soc. 2006; 128: 694
- 9r Huang L, Chen L.-P, Du Y, Fang M.-Y, Wang B.-Q, Feng C, Xiang S.-K. Org. Lett. 2021; 23: 7535
- 9s Zhang M, Deng W, Sun M, Zhou L, Deng G, Liang Y, Yang Y. Org. Lett. 2021; 23: 5744
- 9t Wang X.-C, Wang H.-R, Xu X, Zhao D. Eur. J. Org. Chem. 2021; 3039
- 9u Fang M.-Y, Chen L.-P, Huang L, Fang D.-M, Chen X.-Z, Wang B.-Q, Feng C, Xiang S.-K. J. Org. Chem. 2021; 86: 9096
- 9v Zhu M.-H, Zhang X.-W, Usman M, Cong H, Liu W.-B. ACS Catal. 2021; 11: 5703
- 9w Tang B.-C, He C.-H, Chen X.-L, Ma J.-T, Wang M, Wu Y.-D, Wu A.-X. Chem. Commun. 2021; 57: 121
- 9x Li W, Xiao G, Deng G, Liang Y. Org. Chem. Front. 2018; 5: 1488
- 10a Fleckenstein A, Plenio H. Chem. Eur. J. 2007; 13: 2701
- 10b Belogi G, Zhu T, Boons G.-J. Tetrahedron Lett. 2000; 41: 6969
- 10c Miyatake K, Byungchan B, Watanabe M. Polym. Chem. 2011; 2: 1919
- 10d Poriel C, Sicard L, Rault-Berthelot J. Chem. Commun. 2019; 55: 14238
- 10e Morgan LR, Thangaraj K, LeBlanc B, Rodgers A, Wolford LT, Hooper CL, Fan D, Jursic BS. J. Med. Chem. 2003; 46: 4552
- 10f Beutler U, Fuenfschilling PC, Steinkemper A. Org. Process Res. Dev. 2007; 11: 341
- 11a Kim J, Ohk Y, Park SH, Jung Y, Chang S. Chem. Asian J. 2011; 6: 2040
- 11b Fu WC, Kwong FY. Chem. Sci. 2020; 11: 1411
- 11c Morimoto K, Itoh M, Hirano K, Satoh T, Shibata Y, Tanaka K, Miura M. Angew. Chem. Int. Ed. 2012; 51: 5359
- 11d Lustosa DM, Cieslik P, Hartmann D, Bruckhoff T, Rudolph M, Rominger F, Hashmi AS. K. Org. Chem. Front. 2019; 6: 1655
- 12a Zhou A.-H, Pan F, Zhu C, Ye L.-W. Chem. Eur. J. 2015; 21: 10278
- 12b Hwang SJ, Kim HJ, Chang S. Org. Lett. 2009; 11: 4588
- 12c Liu S, Roch LM, Allemann O, Xu J, Vanthuyne N, Baldridge KK, Siegel JS. J. Org. Chem. 2018; 83: 3979
- 12d Hirano M, Kawazu S, Komine N. Organometallics 2014; 33: 1921
- 12e Chen H, Hurhangee M, Nikolka M, Zhang W, Kirkus M, Neophytou M, Cryer SJ, Harkin D, Hayoz P, Abdi-Jalebi M, McNeill CR, Sirringhaus H, McCulloch I. Adv. Mater. (Weinheim, Ger.) 2017; 29: 1702523
- 12f Dong C.-G, Hu Q.-S. Angew. Chem. Int. Ed. 2006; 45: 2289
- 12g Hsiao C.-H, Lin Y.-K, Liu C.-J, Wu T.-C, Wu Y.-T. Adv. Synth. Catal. 2010; 352: 3267
- 13 Cámpora J, Palma P, del Río D, López JA, Valerga P. Chem. Commun. 2004; 1490
- 14 Fluorenes 3; General Procedure A 25 mL Schlenk tube equipped with a stirrer bar was charged with the appropriate biphenyl-2-yl triflate 1 (0.2 mmol, 1.0 equiv), CH2Br2 (1.4 mmol, 7.0 equiv), Pd(OAc)2 (0.02 mmol, 0.1 equiv), KHCO3 (0.4 mmol, 2.0 equiv), KOAc (0.6 mmol, 3.0 equiv), i-PrOH (0.2 mL), and DMF (2.0 mL). The tube was then frozen with liquid N2 and exchanged with N2 to remove air. The mixture was then stirred at 60 °C for 12 h until the reaction was complete. The resulting mixture was diluted with EtOAc and washed with sat. aq NaCl (3×). The organic phase was collected and dried (MgSO4), and the residue was purified by column chromatography (silica gel, petroleum ether/EtOAc). 9H-Fluorene (3a) White solid (80%). 1H NMR (400 MHz, CDCl3): δ = 7.81 (d, J = 7.5 Hz, 2 H), 7.56 (d, J = 7.4 Hz, 2 H), 7.39 (t, J = 7.3 Hz, 2 H), 7.32 (td, J = 7.3, 0.9 Hz, 2 H), 3.92 (s, 2 H). 13C NMR (101 MHz, CDCl3): δ = 143.2, 141.7, 126.7, 126.7, 125.0, 119.8, 36.9. HRMS (ESI-TOF): m/z [M + H]+ calcd for C13H11: 167.0855; found: 167.0865. 2-Methyl-9H-fluorene (3b) White solid (56%). 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 7.5 Hz, 1 H), 7.68 (d, J = 7.7 Hz, 1 H), 7.53 (d, J = 7.4 Hz, 1 H), 7.39–7.35 (m, 2 H), 7.31–7.25 (m, 1 H), 7.20 (d, J = 7.7 Hz, 1 H), 3.87 (s, 2 H), 2.44 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 143.5, 143.0, 141.8, 139.0, 136.5, 127.5, 126.6, 126.2, 125.7, 124.9, 119.6, 119.5, 36.8, 21.6. HRMS (ESI-TOF): m/z [M – H]+ calcd for C14H11: 179.0855; found: 179.0866. 3-Methyl-9H-fluorene (3c) White solid (70%). 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 7.5 Hz, 1 H), 7.62 (s, 1 H), 7.54 (d, J = 7.4 Hz, 1 H), 7.44 (d, J = 7.6 Hz, 1 H), 7.38 (t, J = 7.4 Hz, 1 H), 7.34–7.27 (m, 1 H), 7.14 (d, J = 7.6 Hz, 1 H), 3.87 (s, 2 H), 2.47 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 143.6, 141.8, 141.7, 140.3, 136.3, 127.6, 126.6, 126.5, 125.0, 124.7, 120.4, 119.70, 36.5, 21.5. HRMS (ESI-TOF): m/z [M – H]+ calcd for C14H11: 179.0855; found: 179.0873. 4-Methyl-9H-fluorene (3d) White solid (44%). 1H NMR (400 MHz, CDCl3): δ = 7.94 (d, J = 7.7 Hz, 1 H), 7.58 (d, J = 7.4 Hz, 1 H), 7.40 (t, J = 7.9 Hz, 2 H), 7.32 (td, J = 7.4, 0.7 Hz, 1 H), 7.22 (t, J = 7.4 Hz, 1 H), 7.16 (d, J = 7.4 Hz, 1 H), 3.92 (s, 2 H), 2.74 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 143.6, 143.6, 142.7, 139.8, 133.0, 129.0, 126.6, 126.4, 126.0, 124.9, 123.1, 122.4, 37.1, 21.1. HRMS (ESI-TOF): m/z [M – H]+ calcd for C14H11: 179.0855; found: 179.0880.
By other groups: