Synlett 2022; 33(18): 1826-1830
DOI: 10.1055/a-1770-1078
cluster
Development and Applications of Novel Ligands/Catalysts and Mechanistic Studies on Catalysis

Palladium-Catalyzed Coupling of Biphenyl-2-yl Trifluoromethanesulfonates with Dibromomethane to Access Fluorenes

Shulei Pan
a   School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
b   West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. of China
,
Qiongqiong Zhu
a   School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
,
Yanghui Zhang
a   School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
› Author Affiliations
The work was supported by the National Natural Science Foundation of China (No. 21971196) and the Science and Technology Commission of Shanghai Municipality (19DZ2271500).


Abstract

A facile and efficient method has been developed for the synthesis of fluorenes by Pd-catalyzed C–H alkylation of biphenyl-2-yl trifluoromethanesulfonates. The trifluoromethanesulfonates are more readily available and more environmentally benign than biphenyl iodides, and are advantageous substrates for traceless directing-group-assisted C–H activation. The reaction generates C,C-palladacycles as the key intermediates that form two C(sp2)–C(sp3) bonds through reaction with CH2Br2. The reaction tolerates various functional groups, permitting easy access to a range of fluorene derivatives.

Supporting Information



Publication History

Received: 16 January 2022

Accepted after revision: 11 February 2022

Accepted Manuscript online:
11 February 2022

Article published online:
10 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a C–H Activation. In Topics in Current Chemistry, Vol. 292. HYu J.-Q, Shi Z. Springer; Heidelberg: 2010
    • 1b Zhang Y, Shi G, Yu J.-Q. 2014; 3: 1101
    • 1c Miao J, Ge H. Eur. J. Org. Chem. 2015; 2015: 7859
    • 1d Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
    • 1e Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 1f Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
    • 1g Baudoin O. Acc. Chem. Res. 2017; 50: 1114
    • 1h He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 1i Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
    • 1j Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 1k Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
    • 1l Wu Z, Cheng C, Zhang Y. Youji Huaxue 2021; 41: 2155
    • 1m Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
    • 1n Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 1o Segawa Y, Maekawa T, Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
    • 2a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 2b Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 2c Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 2d Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
    • 2e Rej S, Ano Y, Chantani N. Chem. Rev. 2020; 120: 1788
    • 3a Vyhivskyi O, Kudashev A, Miyakoshi T, Baudoin O. Chem. Eur. J. 2021; 27: 1231
    • 3b Cao L, Hua Y, Cheng H.-G, Zhou Q. Org. Chem. Front. 2021; 8: 3883
    • 4a Chaumontet M, Piccardi R, Audic N, Hitce J, Peglion J.-L, Clot E, Baudoin O. J. Am. Chem. Soc. 2008; 130: 15157
    • 4b Albicker MR, Cramer N. Angew. Chem. Int. Ed. 2009; 48: 9139
    • 4c Rousseaux S, Davi M, Sofack-Kreutzer J, Pierre C, Kefalidis CE, Clot E, Fagnou K, Baudoin O. J. Am. Chem. Soc. 2010; 132: 10706
    • 4d Shintani R, Otomo H, Ota K, Hayashi T. J. Am. Chem. Soc. 2012; 134: 7305
    • 4e Deng R, Huang Y, Ma X, Li G, Zhu R, Wang B, Kang Y.-B, Gu Z. J. Am. Chem. Soc. 2014; 136: 4472
    • 4f Gao D.-W, Yin Q, Gu Q, You S.-L. J. Am. Chem. Soc. 2014; 136: 4841
    • 4g Yan J.-X, Li H, Liu X.-W, Shi J.-L, Wang X, Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 4945
    • 4h Dyker G. Angew. Chem., Int. Ed. Engl. 1992; 31: 1023
    • 4i Dyker G. Angew. Chem., Int. Ed. Engl. 1994; 33: 103
    • 4j Wu Z, Ma D, Zhou B, Ji X, Ma X, Wang X, Zhang Y. Angew. Chem. Int. Ed. 2017; 56: 12288
    • 4k Gutiérrez-Bonet Á, Juliá-Hernández F, de Luis B, Martin R. J. Am. Chem. Soc. 2016; 138: 6384
    • 4l Lu A, Ji X, Zhou B, Wu Z, Zhang Y. Angew. Chem. Int. Ed. 2018; 57: 3233
    • 4m Lv W, Wen S, Yu J, Cheng G. Org. Lett. 2018; 20: 4984
    • 4n Li W, Chen W, Zhou B, Xu Y, Deng G, Liang Y, Yang Y. Org. Lett. 2019; 21: 2718
    • 4o Tan B, Bai L, Ding P, Liu J, Wang Y, Luan X. Angew. Chem. Int. Ed. 2019; 58: 1474
    • 4p Cheng C, Zhu Q, Zhang Y. Chem. Commun. 2021; 57: 9700
    • 4q Cheng C, Zhang Y. Org. Lett. 2021; 23: 5772
    • 4r Wu Z, Jiang H, Zhang Y. Chem. Sci. 2021; 12: 8531
    • 4s Wu Z, Wei F, Wan B, Zhang Y. J. Am. Chem. Soc. 2021; 143: 4524
    • 4t Wan B, Lu Z, Wu Z, Cheng C, Zhang Y. Org. Lett. 2021; 23: 1269
    • 4u Gu Y, Sun X, Wan B, Lu Z, Zhang Y. Chem. Commun. 2020; 56: 10942
    • 4v Majdecki M, Niedbała P, Jurczak J. ChemistrySelect 2020; 5: 6424
    • 4w Majdecki M, Tyszka-Gumkowska A, Jurczak J. Org. Lett. 2020; 22: 8687
    • 4x Majdecki M, Grodek P, Jurczak J. J. Org. Chem. 2021; 86: 995
  • 5 Chen D, Shi G, Jiang H, Zhang Y. Org. Lett. 2016; 18: 2130
    • 6a Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 6b Qiu Z, Li C. Chem. Rev. 2020; 120: 10454
    • 6c Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
    • 6d So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
    • 6e Kozhushkov S, Potukuchi HK, Ackermann L. Catal. Sci. Technol. 2013; 3: 562
    • 7a Wang J, Zhao J, Gong H. Chem. Commun. 2017; 53: 10180
    • 7b Kang K, Huang L, Weix DJ. J. Am. Chem. Soc. 2020; 142: 10634
    • 7c Fillion E, Trépanier V. É, Heikkinen JJ, Remorova AA, Carson RJ, Goll JM, Seed A. Organometallics 2009; 28: 3518
    • 7d Neely JM, Bezdek MJ, Chirik PJ. ACS Cent. Sci. 2016; 2: 935
    • 8a Cai S.-L, Li Y, Yang C, Sheng J, Wang X.-S. ACS Catal. 2019; 9: 10299
    • 8b Ferguson DM, Rudolph SR, Kalyani D. ACS Catal. 2014; 4: 2395
    • 8c Clemenceau A, Thesmar P, Gicquel M, Le Flohic A, Baudoin O. J. Am. Chem. Soc. 2020; 142: 15355
    • 8d Pedroni J, Cramer N. Chem. Commun. 2015; 51: 17647
    • 8e Cruz AC. F, Miller ND, Willis MC. Org. Lett. 2007; 9: 4391
    • 8f Uryu M, Hiraga T, Koga Y, Saito Y, Murakami K, Itami K. Angew. Chem. Int. Ed. 2020; 59: 6551
    • 9a Shi G, Chen D, Jiang H, Zhang Y, Zhang Y. Org. Lett. 2016; 18: 2958
    • 9b Pan S, Jiang H, Zhang Y, Chen D, Zhang Y. Org. Lett. 2016; 18: 5192
    • 9c Yang S, Zhang Y. Org. Lett. 2021; 23: 7746
    • 9d Cheng C, Zuo X, Tu D, Wan B, Zhang Y. Chem. Commun. 2021; 57: 2939
    • 9e Cheng C, Tu D, Zuo X, Wu Z, Wan B, Zhang Y. Org. Lett. 2021; 23: 1239
    • 9f Shao C, Zhou B, Wu Z, Ji X, Zhang Y. Adv. Synth. Catal. 2018; 360: 887
    • 9g Ma D, Shi G, Wu Z, Ji X, Zhang Y. J. Org. Chem. 2018; 83: 1065
    • 9h Wan B, Zhang Y. Synthesis 2021; 53: 3299

    • By other groups:
    • 9i Tobisu M, Imoto S, Ito S, Chatani N. J. Org. Chem. 2010; 75: 4835
    • 9j Tan B, Liu L, Zheng H, Cheng T, Zhu D, Yang X, Luan X. Chem. Sci. 2020; 11: 10198
    • 9k Liu X, Sheng H, Zhou Y, Song Q. Chem. Commun. 2020; 56: 1665
    • 9l Xu S, Chen R, Fu Z, Zhou Q, Zhang Y, Wang J. ACS Catal. 2017; 7: 1993
    • 9m Larock RC, Tian Q. J. Org. Chem. 1998; 63: 2002
    • 9n Larock RC, Doty MJ, Tian Q, Zenner JM. J. Org. Chem. 1997; 62: 7536
    • 9o Campo MA, Larock RC. Org. Lett. 2000; 2: 3675
    • 9p Campo MA, Larock RC. J. Org. Chem. 2002; 67: 5616
    • 9q Masselot D, Charmant JP. H, Gallagher T. J. Am. Chem. Soc. 2006; 128: 694
    • 9r Huang L, Chen L.-P, Du Y, Fang M.-Y, Wang B.-Q, Feng C, Xiang S.-K. Org. Lett. 2021; 23: 7535
    • 9s Zhang M, Deng W, Sun M, Zhou L, Deng G, Liang Y, Yang Y. Org. Lett. 2021; 23: 5744
    • 9t Wang X.-C, Wang H.-R, Xu X, Zhao D. Eur. J. Org. Chem. 2021; 3039
    • 9u Fang M.-Y, Chen L.-P, Huang L, Fang D.-M, Chen X.-Z, Wang B.-Q, Feng C, Xiang S.-K. J. Org. Chem. 2021; 86: 9096
    • 9v Zhu M.-H, Zhang X.-W, Usman M, Cong H, Liu W.-B. ACS Catal. 2021; 11: 5703
    • 9w Tang B.-C, He C.-H, Chen X.-L, Ma J.-T, Wang M, Wu Y.-D, Wu A.-X. Chem. Commun. 2021; 57: 121
    • 9x Li W, Xiao G, Deng G, Liang Y. Org. Chem. Front. 2018; 5: 1488
    • 10a Fleckenstein A, Plenio H. Chem. Eur. J. 2007; 13: 2701
    • 10b Belogi G, Zhu T, Boons G.-J. Tetrahedron Lett. 2000; 41: 6969
    • 10c Miyatake K, Byungchan B, Watanabe M. Polym. Chem. 2011; 2: 1919
    • 10d Poriel C, Sicard L, Rault-Berthelot J. Chem. Commun. 2019; 55: 14238
    • 10e Morgan LR, Thangaraj K, LeBlanc B, Rodgers A, Wolford LT, Hooper CL, Fan D, Jursic BS. J. Med. Chem. 2003; 46: 4552
    • 10f Beutler U, Fuenfschilling PC, Steinkemper A. Org. Process Res. Dev. 2007; 11: 341
    • 11a Kim J, Ohk Y, Park SH, Jung Y, Chang S. Chem. Asian J. 2011; 6: 2040
    • 11b Fu WC, Kwong FY. Chem. Sci. 2020; 11: 1411
    • 11c Morimoto K, Itoh M, Hirano K, Satoh T, Shibata Y, Tanaka K, Miura M. Angew. Chem. Int. Ed. 2012; 51: 5359
    • 11d Lustosa DM, Cieslik P, Hartmann D, Bruckhoff T, Rudolph M, Rominger F, Hashmi AS. K. Org. Chem. Front. 2019; 6: 1655
    • 12a Zhou A.-H, Pan F, Zhu C, Ye L.-W. Chem. Eur. J. 2015; 21: 10278
    • 12b Hwang SJ, Kim HJ, Chang S. Org. Lett. 2009; 11: 4588
    • 12c Liu S, Roch LM, Allemann O, Xu J, Vanthuyne N, Baldridge KK, Siegel JS. J. Org. Chem. 2018; 83: 3979
    • 12d Hirano M, Kawazu S, Komine N. Organometallics 2014; 33: 1921
    • 12e Chen H, Hurhangee M, Nikolka M, Zhang W, Kirkus M, Neophytou M, Cryer SJ, Harkin D, Hayoz P, Abdi-Jalebi M, McNeill CR, Sirringhaus H, McCulloch I. Adv. Mater. (Weinheim, Ger.) 2017; 29: 1702523
    • 12f Dong C.-G, Hu Q.-S. Angew. Chem. Int. Ed. 2006; 45: 2289
    • 12g Hsiao C.-H, Lin Y.-K, Liu C.-J, Wu T.-C, Wu Y.-T. Adv. Synth. Catal. 2010; 352: 3267
  • 13 Cámpora J, Palma P, del Río D, López JA, Valerga P. Chem. Commun. 2004; 1490
  • 14 Fluorenes 3; General Procedure A 25 mL Schlenk tube equipped with a stirrer bar was charged with the appropriate biphenyl-2-yl triflate 1 (0.2 mmol, 1.0 equiv), CH2Br2 (1.4 mmol, 7.0 equiv), Pd(OAc)2 (0.02 mmol, 0.1 equiv), KHCO3 (0.4 mmol, 2.0 equiv), KOAc (0.6 mmol, 3.0 equiv), i-PrOH (0.2 mL), and DMF (2.0 mL). The tube was then frozen with liquid N2 and exchanged with N2 to remove air. The mixture was then stirred at 60 °C for 12 h until the reaction was complete. The resulting mixture was diluted with EtOAc and washed with sat. aq NaCl (3×). The organic phase was collected and dried (MgSO4), and the residue was purified by column chromatography (silica gel, petroleum ether/EtOAc). 9H-Fluorene (3a) White solid (80%). 1H NMR (400 MHz, CDCl3): δ = 7.81 (d, J = 7.5 Hz, 2 H), 7.56 (d, J = 7.4 Hz, 2 H), 7.39 (t, J = 7.3 Hz, 2 H), 7.32 (td, J = 7.3, 0.9 Hz, 2 H), 3.92 (s, 2 H). 13C NMR (101 MHz, CDCl3): δ = 143.2, 141.7, 126.7, 126.7, 125.0, 119.8, 36.9. HRMS (ESI-TOF): m/z [M + H]+ calcd for C13H11: 167.0855; found: 167.0865. 2-Methyl-9H-fluorene (3b) White solid (56%). 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 7.5 Hz, 1 H), 7.68 (d, J = 7.7 Hz, 1 H), 7.53 (d, J = 7.4 Hz, 1 H), 7.39–7.35 (m, 2 H), 7.31–7.25 (m, 1 H), 7.20 (d, J = 7.7 Hz, 1 H), 3.87 (s, 2 H), 2.44 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 143.5, 143.0, 141.8, 139.0, 136.5, 127.5, 126.6, 126.2, 125.7, 124.9, 119.6, 119.5, 36.8, 21.6. HRMS (ESI-TOF): m/z [M – H]+ calcd for C14H11: 179.0855; found: 179.0866. 3-Methyl-9H-fluorene (3c) White solid (70%). 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 7.5 Hz, 1 H), 7.62 (s, 1 H), 7.54 (d, J = 7.4 Hz, 1 H), 7.44 (d, J = 7.6 Hz, 1 H), 7.38 (t, J = 7.4 Hz, 1 H), 7.34–7.27 (m, 1 H), 7.14 (d, J = 7.6 Hz, 1 H), 3.87 (s, 2 H), 2.47 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 143.6, 141.8, 141.7, 140.3, 136.3, 127.6, 126.6, 126.5, 125.0, 124.7, 120.4, 119.70, 36.5, 21.5. HRMS (ESI-TOF): m/z [M – H]+ calcd for C14H11: 179.0855; found: 179.0873. 4-Methyl-9H-fluorene (3d) White solid (44%). 1H NMR (400 MHz, CDCl3): δ = 7.94 (d, J = 7.7 Hz, 1 H), 7.58 (d, J = 7.4 Hz, 1 H), 7.40 (t, J = 7.9 Hz, 2 H), 7.32 (td, J = 7.4, 0.7 Hz, 1 H), 7.22 (t, J = 7.4 Hz, 1 H), 7.16 (d, J = 7.4 Hz, 1 H), 3.92 (s, 2 H), 2.74 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 143.6, 143.6, 142.7, 139.8, 133.0, 129.0, 126.6, 126.4, 126.0, 124.9, 123.1, 122.4, 37.1, 21.1. HRMS (ESI-TOF): m/z [M – H]+ calcd for C14H11: 179.0855; found: 179.0880.