Horm Metab Res 2022; 54(03): 131-144
DOI: 10.1055/a-1767-5581
Review

The Impact of Bariatric Surgery on Bone Health: State of the Art and New Recognized Links

Fernando Mendonça
1   Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar e Universitário de S. João, Porto, Portugal
2   Faculdade de Medicina da Universidade do Porto, Porto, Portugal
,
Raquel Soares
2   Faculdade de Medicina da Universidade do Porto, Porto, Portugal
3   Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
4   Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
,
Davide Carvalho
1   Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar e Universitário de S. João, Porto, Portugal
2   Faculdade de Medicina da Universidade do Porto, Porto, Portugal
3   Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
,
Paula Freitas
1   Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar e Universitário de S. João, Porto, Portugal
2   Faculdade de Medicina da Universidade do Porto, Porto, Portugal
3   Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
› Author Affiliations

Abstract

Bariatric surgery (BS) is the most effective therapy for severe obesity, which improves several comorbidities (such as diabetes, hypertension, dyslipidemia, among others) and results in marked weight loss. Despite these consensual beneficial effects, sleeve gastrectomy and Roux-en-Y gastric bypass (the two main bariatric techniques) have also been associated with changes in bone metabolism and progressive bone loss. The objective of this literature review is to examine the impact of bariatric surgery on bone and its main metabolic links, and to analyze the latest findings regarding the risk of fracture among patients submitted to bariatric surgery.



Publication History

Received: 23 November 2021

Accepted after revision: 26 January 2022

Article published online:
11 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism 2019; 92: 6-10
  • 2 WHO. Obesity and overweight. In: WHO website. 2021 https://who.int
  • 3 OECD. Obesity update – 2017. In: OECD website. 2017 https://oecd.org
  • 4 Souteiro P, Belo S, Magalhães D. et al. Long-term diabetes outcomes after bariatric surgery-managing medication withdrawl. Int J Obes 2005; 2019: 2217-2224
  • 5 Guerreiro V, Neves JS, Salazar D. et al. Long-term weight loss and metabolic syndrome remission after bariatric surgery: the effect of sex, age, metabolic parameters and surgical technique – a 4-year follow-up study. Obes Facts 2019; 12: 639-652
  • 6 Cunha FM, Oliveira J, Preto J. et al. The effect of bariatric surgery type on lipid profile: an age, sex, body mass index and excess weight loss matched study. Obes Surg 2016; 26: 1041-1047
  • 7 Pantalone KM, Hobbs TM, Chagin KM. et al. Prevalence and recognition of obesity and its associated comorbidities: cross-sectional analysis of electronic health record data from a large US integrated health system. BMJ Open 2017; 7: e017583
  • 8 Segula D. Complications of obesity in adults: a short review of the literature. Malawi Med J 2014; 26: 20-24
  • 9 González-Muniesa P, Mártinez-González M-A, Hu FB. et al. Obesity. Nature Rev Dis Primers 2017; 3: 17034
  • 10 Ruban A, Stoenchev K, Ashrafian H. et al. Current treatments for obesity. Clin Med (Lond) 2019; 19: 205-212
  • 11 Courcoulas AP, Yanovski SZ, Bonds D. et al. Long-term outcomes of bariatric surgery: a National Institutes of Health symposium. JAMA Surg 2014; 149: 1323-1329
  • 12 Puzziferri N, Roshek TB, Mayo HG. et al. Long-term follow-up after bariatric surgery: a systematic review. JAMA 2014; 312: 934-942
  • 13 Angrisani L, Santonicola A, Iovino P. et al. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes Surg 2017; 27: 2279-2289
  • 14 ASMBS. Estimate of bariatric surgery numbers, 2011–2018. In: ASMBS website. 2018 https://asmbs.org
  • 15 Yu EW. Bone metabolism after bariatric surgery. J Bone Miner Res 2014; 29: 1507-1518
  • 16 Corbeels K, Verlinden L, Lannoo M. et al. Thin bones: vitamin D and calcium handling after bariatric surgery. Bone Rep 2018; 8: 57-63
  • 17 Ben-Porat T, Elazary R, Sherf-Dagan S. et al. Bone health following bariatric surgery: implications for management strategies to attenuate bone loss. Adv Nutr 2018; 9: 114-127
  • 18 Tanner SB, Moore CF. A review of the use of dual-energy X-ray absorptiometry (DXA) in rheumatology. Open Access Rheumatol 2012; 4: 99-107
  • 19 Harper C, Pattinson AL, Fernando HA. et al. Effects of obesity treatments on bone mineral density, bone turnover and fracture risk in adults with overweight or obesity. Horm Mol Biol Clin Investig 2016; 28: 133-149
  • 20 Yu EW, Thomas BJ, Brown JK. et al. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 2012; 27: 119-124
  • 21 Brzozowska MM, Sainsbury A, Eisman JA. et al. Bariatric surgery and bone loss: do we need to be concerned?. Clin Rev Bone Miner Metab 2014; 12: 207-227
  • 22 Link TM, Lang TF. Axial QCT: clinical applications and new developments. J Clin Densit 2014; 17: 438-448
  • 23 Stagi S, Cavalli L, Cavalli T. et al. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Ital J Pediatr 2016; 42: 88-88
  • 24 Li X, Na L, Xiaoguang C. Update on the clinical application of quantitative computed tomography (QCT) in osteoporosis. Curr Radiol Rep 2014; 2: 65 DOI: 10.1007/s40134-014-0065-9.
  • 25 Adam A, Dixon AK, Gillard JH. et al. Grainger & Allison's diagnostic radiology: a textbook of medical imaging. 2015. Amsterdam: Elsevier;
  • 26 Yu EW, Bouxsein ML, Roy AE. et al. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res 2014; 29: 542-550
  • 27 Kanis JA, Harvey NC, Johansson H. et al. A decade of FRAX: how has it changed the management of osteoporosis?. Aging Clin Exp Res 2020; 32: 187-196
  • 28 Centre for Metabolic Bone Diseases UoS, UK. FRAX – Fracture risk assessment tool website. In https://sheffield.ac.uk
  • 29 Martineau P, Leslie WD. The utility and limitations of using trabecular bone score with FRAX. Curr Opin Rheumatol 2018; 30: 412-419
  • 30 Shevroja E, Lamy O, Kohlmeier L. et al. Use of trabecular bone score (TBS) as a complementary approach to dual-energy X-ray absorptiometry (DXA) for fracture risk assessment in clinical practice. J Clin Densit 2017; 20: 334-345
  • 31 Silva BC, Leslie WD, Resch H. et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 2014; 29: 518-530
  • 32 Muschitz C, Kocijan R, Haschka J. et al. The impact of vitamin D, calcium, protein supplementation, and physical exercise on bone metabolism after bariatric surgery: the BABS study. J Bone Miner Res 2016; 31: 672-682
  • 33 Marengo AP, Guerrero Pérez F, San Martín L. et al. Is trabecular bone score valuable in bone microstructure assessment after gastric bypass in women with morbid obesity?. Nutrients 2017; 9: 1314
  • 34 Shetty S, Kapoor N, Bondu JD. et al. Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab 2016; 20: 846-852
  • 35 Vasikaran S, Eastell R, Bruyere O. et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 2011; 22: 391-420
  • 36 Ko BJ, Myung SK, Cho KH. et al. Relationship between bariatric surgery and bone mineral density: a meta-analysis. Obes Surg 2016; 26: 1414-1421
  • 37 Liu C, Wu D, Zhang JF. et al. Changes in bone metabolism in morbidly obese patients after bariatric surgery: a meta-analysis. Obes Surg 2016; 26: 91-97
  • 38 Rodríguez-Carmona Y, López-Alavez FJ, González-Garay AG. et al. Bone mineral density after bariatric surgery. A systematic review. Int J Surg (London, England) 2014; 12: 976-982
  • 39 Blom-Høgestøl IK, Hewitt S, Chahal-Kummen M. et al. Bone metabolism, bone mineral density and low-energy fractures 10 years after Roux-en-Y gastric bypass. Bone 2019; 127: 436-445
  • 40 Svanevik M, Risstad H, Hofsø D. et al. Bone turnover markers after standard and distal Roux-en-Y gastric bypass: results from a randomized controlled trial. Obes Surg 2019; 29: 2886-2895
  • 41 Tangalakis LL, Tabone L, Spagnoli A. et al. Effects of Roux-en-Y gastric bypass on osteoclast activity and bone density in morbidly obese patients with type 2 diabetes. Obes Surg 2020; 30: 290-295
  • 42 Gagnon C, Schafer AL. Bone health after bariatric surgery. JBMR Plus 2018; 2: 121-133
  • 43 Yu EW, Bouxsein ML, Putman MS. et al. Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 2015; 100: 1452-1459
  • 44 Bredella MA, Greenblatt LB, Eajazi A. et al. Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue. Bone 2017; 95: 85-90
  • 45 Crawford MR, Pham N, Khan L. et al. Increased bone turnover in type 2 diabetes patients randomized to bariatric surgery versus medical therapy at 5 years. Endocr Prac 2018; 24: 256-264
  • 46 Schafer AL, Kazakia GJ, Vittinghoff E. et al. Effects of gastric bypass surgery on bone mass and microarchitecture occur early and particularly impact postmenopausal women. J Bone Miner Res 2018; 33: 975-986
  • 47 Shanbhogue VV, Støving RK, Frederiksen KH. et al. Bone structural changes after gastric bypass surgery evaluated by HR-pQCT: a two-year longitudinal study. Eur J Endocrinol 2017; 176: 685-693
  • 48 Hansen S, Jørgensen NR, Hermann AP. et al. Continuous decline in bone mineral density and deterioration of bone microarchitecture 7 years after Roux-en-Y gastric bypass surgery. Eur J Endocrinol 2020; 182: 303-311
  • 49 Nguyen NT, Varela JE. Bariatric surgery for obesity and metabolic disorders: state of the art. Nat Rev Gastroenterol Hepatol 2017; 14: 160-169
  • 50 Jaruvongvanich V, Vantanasiri K, Upala S. et al. Changes in bone mineral density and bone metabolism after sleeve gastrectomy: a systematic review and meta-analysis. Surg Obes Relat Dis 2019; 15: 1252-1260
  • 51 Cadart O, Degrandi O, Barnetche T. et al. Long-term effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density: a 4-year longitudinal study. Obes Surg. 2020
  • 52 Tian Z, Fan XT, Li SZ. et al. Changes in bone metabolism after sleeve gastrectomy versus gastric bypass: a meta-analysis. Obes Surg 2020; 30: 77-86
  • 53 Luhrs AR, Davalos G, Lerebours R. et al. Determining changes in bone metabolism after bariatric surgery in postmenopausal women. Surg Endosc 2020; 34: 1754-1760
  • 54 Kim J, Nimeri A, Khorgami Z. et al. Metabolic bone changes after bariatric surgery: 2020 update, American Society for Metabolic and Bariatric Surgery Clinical Issues Committee position statement. Surg Obes Relat Dis 2021; 17: 1-8
  • 55 Foundation IO. Facts and statistics. In: 2020 https://www.osteoporosis.foundation
  • 56 Beavers KM, Greene KA, Yu EW. Management of endocrine disease: bone complications of bariatric surgery: updates on sleeve gastrectomy, fractures, and interventions. Eur J Endocrinol 2020; 183: R119
  • 57 Zhang Q, Chen Y, Li J. et al. A meta-analysis of the effects of bariatric surgery on fracture risk. Obes Rev 2018; 19: 728-736
  • 58 Ablett AD, Boyle BR, Avenell A. Fractures in adults after weight loss from bariatric surgery and weight management programs for obesity: systematic review and meta-analysis. Obes Surg 2019; 29: 1327-1342
  • 59 Lu CW, Chang YK, Chang HH. et al. Fracture risk after bariatric surgery: a 12-year nationwide cohort study. Medicine (Baltimore) 2015; 94: e2087
  • 60 Ahlin S, Peltonen M, Sjöholm K. et al. Fracture risk after three bariatric surgery procedures in Swedish obese subjects: up to 26 years follow-up of a controlled intervention study. J Intern Med 2020; 287: 546-557
  • 61 Nakamura KM, Haglind EG, Clowes JA. et al. Fracture risk following bariatric surgery: a population-based study. Osteoporos Int 2014; 25: 151-158
  • 62 Fashandi AZ, Mehaffey JH, Hawkins RB. et al. Bariatric surgery increases risk of bone fracture. Surg Endosc 2018; 32: 2650-2655
  • 63 Paccou J, Martignene N, Lespessailles E. et al. Gastric bypass but not sleeve gastrectomy increases risk of major osteoporotic fracture: French population-based cohort study. J Bone Miner Res 2020; 35: 1415-1423
  • 64 Lalmohamed A, de Vries F, Bazelier MT. et al. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ 2012; 345: e5085
  • 65 Zhang Q, Dong J, Zhou D. et al. Comparative risk of fracture for bariatric procedures in patients with obesity: A systematic review and Bayesian network meta-analysis. Int J Surg (London, England) 2020; 75: 13-23
  • 66 Thereaux J, Lesuffleur T, Païta M. et al. Long-term follow-up after bariatric surgery in a national cohort. Br J Surg 2017; 104: 1362-1371
  • 67 Ye Y, Yang D, Han J. The effect of bariatric surgery on bone Health: From mechanism to management. Obes Med 2020; 18: 100199
  • 68 Muschitz C, Kocijan R, Marterer C. et al. Sclerostin levels and changes in bone metabolism after bariatric surgery. J Clin Endocrinol Metab 2015; 100: 891-901
  • 69 Wei JH, Lee WJ, Chong K. et al. High incidence of secondary hyperparathyroidism in bariatric patients: comparing different procedures. Obes Surg 2018; 28: 798-804
  • 70 Krez AN, Stein EM. The skeletal consequences of bariatric surgery. Curr Osteoporos Rep 2020; 18: 262-272
  • 71 Stein EM, Carrelli A, Young P. et al. Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab 2013; 98: 541-549
  • 72 Carlin AM, Rao DS, Yager KM. et al. Treatment of vitamin D depletion after Roux-en-Y gastric bypass: a randomized prospective clinical trial. Surg Obes Relat Dis 2009; 5: 444-449
  • 73 Schafer AL, Weaver CM, Black DM. et al. Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J Bone Miner Res 2015; 30: 1377-1385
  • 74 Carrasco F, Basfi-fer K, Rojas P. et al. Calcium absorption may be affected after either sleeve gastrectomy or Roux-en-Y gastric bypass in premenopausal women: a 2-y prospective study. Am J Clin Nutr 2018; 108: 24-32
  • 75 Stein EM, Carrelli A, Young P. et al. Bariatric surgery results in cortical bone loss. J Clin Endocrinol Metab 2013; 98: 541-549
  • 76 Falchetti A, Cosso R. The interaction between vitamin C and bone health: a narrative review. Expert Rev Precis Med Drug Dev 2018; 3: 215-223
  • 77 Brzezińska O, Łukasik Z, Makowska J. et al. Role of vitamin C in osteoporosis development and treatment – a literature review. Nutrients 2020; 12: 2394
  • 78 Aaseth E, Fagerland MW, Aas AM. et al. Vitamin concentrations 5 years after gastric bypass. Eur J Clin Nutr 2015; 69: 1249-1255
  • 79 Aasheim ET, Björkman S, Søvik TT. et al. Vitamin status after bariatric surgery: a randomized study of gastric bypass and duodenal switch. Am J Clin Nutr 2009; 90: 15-22
  • 80 Netto BD, Moreira EA, Patiño JS. et al. Influence of Roux-en-Y gastric bypass surgery on vitamin C, myeloperoxidase, and oral clinical manifestations: a 2-year follow-up study. Nutr Clin Pract 2012; 27: 114-121
  • 81 Wong SK, Mohamad N-V, Ibrahim NI. et al. The molecular mechanism of vitamin E as a bone-protecting agent: a review on current evidence. Int J Mol Sci 2019; 20: 1453
  • 82 Lewis CA, de Jersey S, Hopkins G. et al. Does bariatric surgery cause vitamin A, B1, C or E deficiency? A systematic review. Obes Surg 2018; 28: 3640-3657
  • 83 Sherf-Dagan S, Buch A, Ben-Porat T. et al. Vitamin E status among bariatric surgery patients: a systematic review. Surg Obes Relat Dis 2021; 17: 816-830
  • 84 Faria SL, Faria OP, Buffington C. et al. Dietary protein intake and bariatric surgery patients: a review. Obes Surg 2011; 21: 1798-1805
  • 85 Nicoletti CF, Morandi Junqueira-Franco MV, dos Santos JE. et al. Protein and amino acid status before and after bariatric surgery: a 12-month follow-up study. Surg Obes Relat Dis 2013; 9: 1008-1012
  • 86 Voican CS, Lebrun A, Maitre S. et al. Predictive score of sarcopenia occurrence one year after bariatric surgery in severely obese patients. PloS One 2018; 13: e0197248
  • 87 Lima RM, de Oliveira RJ, Raposo R. et al. Stages of sarcopenia, bone mineral density, and the prevalence of osteoporosis in older women. Arch Osteoporos 2019; 14: 38 DOI: 10.1007/s11657-019-0591-4.
  • 88 Verschueren S, Gielen E, O’Neill TW. et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int 2013; 24: 87-98
  • 89 Sukumar D, Ambia-Sobhan H, Zurfluh R. et al. Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. J Bone Miner Res 2011; 26: 1339-1348
  • 90 Folli F, Sabowitz BN, Schwesinger W. et al. Bariatric surgery and bone disease: from clinical perspective to molecular insights. Int J Obes (2005) 2012; 36: 1373-1379
  • 91 Mantzoros CS, Magkos F, Brinkoetter M. et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 2011; 301: E567-E584
  • 92 Gregory NS. The effects of bariatric surgery on bone metabolism. Endocrinol Metab Clin North America 2017; 46: 105-116
  • 93 Bruno C, Fulford AD, Potts JR. et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab 2010; 95: 159-166
  • 94 Kalinowski P, Paluszkiewicz R, Wróblewski T. et al. Ghrelin, leptin, and glycemic control after sleeve gastrectomy versus Roux-en-Y gastric bypass-results of a randomized clinical trial. Surg Obes Relat Dis 2017; 13: 181-188
  • 95 Münzberg H, Björnholm M, Bates SH. et al. Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci 2005; 62: 642-652
  • 96 Biver E, Salliot C, Combescure C. et al. Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 2011; 96: 2703-2713
  • 97 Hosseinzadeh-Attar MJ, Golpaie A, Janani L. et al. Effect of weight reduction following bariatric surgery on serum visfatin and adiponectin levels in morbidly obese subjects. Obes Facts 2013; 6: 193-202
  • 98 Luo XH, Guo LJ, Xie H. et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res 2006; 21: 1648-1656
  • 99 Carrasco F, Ruz M, Rojas P. et al. Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. ObesSurg 2009; 19: 41-46
  • 100 Franco-Trepat E, Guillán-Fresco M, Alonso-Pérez A. et al. Visfatin connection: present and future in osteoarthritis and osteoporosis. J Clin Med 2019; 8: 1178
  • 101 Oh KW, Lee WY, Rhee EJ. et al. The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin Endocrinol 2005; 63: 131-138
  • 102 Tariq S, Tariq S, Khaliq S. et al. Serum resistin levels as predictor of low bone mineral density in postmenopausal women. Health Care Women Int 2020; 1-10
  • 103 Wen J-P, Wen L-Y, Zhao Y-J. et al. Effect of bariatric surgery on sexual function and sex hormone levels in obese patients: a meta-analysis. J Endocr Soc 2017; 2: 117-132
  • 104 Cauley JA. Estrogen and bone health in men and women. Steroids 2015; 99: 11-15
  • 105 Hammoud A, Gibson M, Hunt SC. et al. Effect of Roux-en-Y gastric bypass surgery on the sex steroids and quality of life in obese men. J Clin Endocrinol Metab 2009; 94: 1329-1332
  • 106 Brzozowska MM, Sainsbury A, Eisman JA. et al. Bariatric surgery, bone loss, obesity and possible mechanisms. Obes Rev 2013; 14: 52-67
  • 107 McCarty TR, Jirapinyo P, Thompson CC. Effect of sleeve gastrectomy on ghrelin, GLP-1, PYY, and GIP gut hormones: a systematic review and meta-analysis. Ann Surg 2020; 272
  • 108 Xu H-C, Pang Y-C, Chen J-W. et al. Systematic review and meta-analysis of the change in ghrelin levels after Roux-en-Y gastric bypass. Obes Surg 2019; 29: 1343-1351
  • 109 Nouh O, Abd Elfattah MM, Hassouna AA. Association between ghrelin levels and BMD: a cross sectional trial. Gynecol Endocrinol 2012; 28: 570-572
  • 110 Weiss LA, Langenberg C, Barrett-Connor E. Ghrelin and bone: is there an association in older adults?: the Rancho Bernardo study. J Bone Miner Res 2006; 21: 752-757
  • 111 Wang J, Ma J, Yu H. et al. Unacylated ghrelin is correlated with the decline of bone mineral density after Roux-en-Y gastric bypass in obese Chinese with type 2 diabetes. Surg Obes Relat Dis 2019; 15: 1473-1480
  • 112 Cazzo E, Gestic MA, Utrini MP. et al. GLP-2: a poorly understood mediator enrolled in various bariatric/metabolic surgery-related pathophysiologic mechanisms. Arq Bras Cir Dig 2016; 29: 272-275
  • 113 Hutch CR, Sandoval D. The role of GLP-1 in the metabolic success of bariatric surgery. Endocrinology 2017; 158: 4139-4151
  • 114 Kim ES, Keam SJ. Teduglutide: A Review in Short Bowel Syndrome. Drugs 2017; 77: 345-352
  • 115 Schiellerup SP, Skov-Jeppesen K, Windeløv JA. et al. Gut hormones and their effect on bone metabolism. Potential drug therapies in future osteoporosis treatment. Front Endocrinol 2019; 10: 75-75
  • 116 Montes Castillo MC, Martínez Ramírez MJ, Soriano Arroyo R. et al. Glucagon-like peptide 1 and Glucagon-like peptide 2 in relation to osteoporosis in non-diabetic postmenopausal women. Sci Rep 2019; 9: 13651
  • 117 Zhao C, Liang J, Yang Y. et al. The impact of glucagon-like peptide-1 on bone metabolism and its possible mechanisms. Front Endocrinol 2017; 8: 98-98
  • 118 Iepsen EW, Lundgren JR, Hartmann B. et al. GLP-1 Receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women. J Clin Endocrinol Metab 2015; 100: 2909-2917
  • 119 Gazda CL, Clark JD, Lingvay I. et al. Pharmacotherapies for post-bariatric weight regain: real-world comparative outcomes. Obesity 2021; 29: 829-836
  • 120 Casimiro I, Sam S, Brady MJ. Endocrine implications of bariatric surgery: a review on the intersection between incretins, bone, and sex hormones. Physiol Rep 2019; 7: e14111
  • 121 Torekov SS, Harsløf T, Rejnmark L. et al. A functional amino acid substitution in the glucose-dependent insulinotropic polypeptide receptor (GIPR) gene is associated with lower bone mineral density and increased fracture risk. J Clin Endocrinol Metab 2014; 99: E729-E733
  • 122 Meek CL, Lewis HB, Reimann F. et al. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides 2016; 77: 28-37
  • 123 Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2020
  • 124 Luijten J, Vugts G, Nieuwenhuijzen GAP. et al. The importance of the microbiome in bariatric surgery: a systematic review. Obes Surg 2019; 29: 2338-2349
  • 125 Li S, Mao Y, Zhou F. et al. Gut microbiome and osteoporosis. Bone Joint Res 2020; 9: 524-530
  • 126 Yan J, Charles JF. Gut microbiome and bone: to build, destroy, or both?. Curr Osteoporos Rep 2017; 15: 376-384
  • 127 Cheng S, Qi X, Ma M. et al. Assessing the relationship between gut microbiota and bone mineral density. Front Genet 2020; 11: 6-6
  • 128 Colaianni G, Sanesi L, Storlino G. et al. Irisin and bone: from preclinical studies to the evaluation of its circulating levels in different populations of human subjects. Cells 2019; 8: 451
  • 129 Farmer SR. Boning up on irisin. N Eng. J Med 2019; 380: 1480-1482
  • 130 André Pereira ACP, Carvalho Davide, Maia JoséCosta, Freitas Paula. Irisin: a bright or a dark future?. Revis Portug Endocrinol Diabetes Metab 2019; 14: 82-87
  • 131 Zhang J, Huang X, Yu R. et al. Circulating irisin is linked to bone mineral density in geriatric Chinese men. Open Med 2020; 15: 763-768
  • 132 Qiao X, Nie Y, Ma Y. et al. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep 2016; 6: 18732
  • 133 Kim H, Wrann CD, Jedrychowski M. et al. Irisin Mediates Effects on Bone and Fat via aV Integrin Receptors. Cell 2018; 175: 1756-1768.e1717
  • 134 Estell EG, Le PT, Vegting Y. et al. Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo. Elife 2020; 9: e58172
  • 135 Glück M, Glück J, Wiewióra M. et al. Serum irisin, adropin, and preptin in obese patients 6 months after bariatric surgery. Obes Surg 2019; 29: 3334
  • 136 Demirpence M, Yilmaz H, Colak A. et al. The effect of sleeve gastrectomy on serum irisin levels in patients with morbid obesity. Endokrynol Pol 2016; 67: 481-486
  • 137 Lu C, Li Z, Yang J. et al. Variations in irisin, bone mineral density, bone mineral content, and body composition after laparoscopic bariatric procedures in obese adults. J Clin Densitom 2020; 23: 244-253
  • 138 Wang W, Cheng Z, Wang Y. et al. Role of bile acids in bariatric surgery. Front Physiol 2019; 10: 374-374
  • 139 Albaugh VL, Banan B, Ajouz H. et al. Bile acids and bariatric surgery. Mol Asp Med 2017; 56: 75-89
  • 140 Zhao Y-X, Song Y-W, Zhang L. et al. Association between bile acid metabolism and bone mineral density in postmenopausal women. Clinics (Sao Paulo) 2020; 75: e1486-e1486
  • 141 Cho SW, An JH, Park H. et al. Positive regulation of osteogenesis by bile acid through FXR. J Bone Miner Res 2013; 28: 2109-2121
  • 142 Ruiz-Gaspà S, Guañabens N, González SJ. et al. Bile acids and bilirubin effects on osteoblastic gene profile. Implications in the pathogenesis of osteoporosis in liver diseases. bioRxiv 2019; 705871
  • 143 Tezze C, Romanello V, Sandri M. FGF21 as Modulator of metabolism in health and disease. Front Physiol 2019; 10: 419 DOI: 10.3389/fphys.2019.00419.
  • 144 Crujeiras AB, Gomez-Arbelaez D, Zulet MA. et al. Plasma FGF21 levels in obese patients undergoing energy-restricted diets or bariatric surgery: a marker of metabolic stress?. Int J Obes 2017; 41: 1570
  • 145 Azharian S, Murphy A, Mcternan PG. et al. Effects of bariatric surgery on FGF-19 and FGF-21 levels on obese diabetic women. Diabetes 2018; 67: 1573-157
  • 146 Khan FH, Shaw L, Zhang W. et al. Fibroblast growth factor 21 correlates with weight loss after vertical sleeve gastrectomy in adolescents. Obesity (Silver Spring. Md) 2016; 24: 2377-2383
  • 147 Gómez-Ambrosi J, Gallego-Escuredo JM, Catalán V. et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin Nutr (Edinburgh, Scotland) 2017; 36: 861-868
  • 148 Zibellini J, Seimon RV, Lee CM. et al. Does diet-induced weight loss lead to bone loss in overweight or obese adults? A systematic review and meta-analysis of clinical trials. J Bone Miner Res 2015; 30: 2168-2178
  • 149 Papageorgiou M, Kerschan-Schindl K, Sathyapalan T. et al. Is weight loss harmful for skeletal health in obese older adults?. Gerontology 2020; 66: 2-14
  • 150 Cooiman MI, Kleinendorst L, Aarts EO. et al. Genetic obesity and bariatric surgery outcome in 1014 patients with morbid obesity. Obes Surg 2020; 30: 470-477
  • 151 Iepsen EW, Zhang J, Hollensted M. et al. Adults with pathogenic MC4R mutations have increased final height and thereby increased bone mass. J Bone Miner Metab 2020; 38: 117-125
  • 152 Reid IR, Baldock PA, Cornish J. Effects of leptin on the skeleton. Endocr Rev 2018; 39: 938-959
  • 153 Goktas Z, Moustaid-Moussa N, Shen C-L. et al. Effects of bariatric surgery on adipokine-induced inflammation and insulin resistance. Front Endocrinol 2013; 4: 69 DOI: 10.3389/fendo.2013.00069.
  • 154 Salman MA, El-ghobary M, Soliman A. et al. Long-term changes in leptin, chemerin, and ghrelin levels following Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy. Obes Surg 2020; 30: 1052-1060
  • 155 Jin J, Wang Y, Jiang H. et al. The impact of obesity through fat depots and adipokines on bone homeostasis. AME Med J 2018; 3-10
  • 156 Gómez-Martin JM, Balsa JA, Aracil E. et al. Circulating adiponectin increases in obese women after sleeve gastrectomy or gastric bypass driving beneficial metabolic changes but with no relationship with carotid intima-media thickness. Clin Nutr 2018; 37: 21022106
  • 157 Parreño Caparrós E, Illán Gómez F, Gonzálvez Ortega M. et al. Resistin in morbidly obese patients before and after gastric bypass surgery Available at:. http://europepmc.org/abstract/MED/29280648 DOI: 10.20960/nh.1028 Date Accessed: 2017/09
  • 158 Johnston CS, Beezhold BL, Mostow B. et al. Plasma vitamin C is inversely related to body mass index and waist circumference but not to plasma adiponectin in nonsmoking adults. J Nutr 2007; 137: 1757-1762
  • 159 Laird E, Ward M, McSorley E. et al. Vitamin D and bone health: potential mechanisms. Nutrients 2010; 2: 693-724
  • 160 Vranić L, Mikolašević I, Milić S. Vitamin D Deficiency: Consequence or cause of obesity?. Medicina (Kaunas) 2019; 55: 541
  • 161 Fox A, Slater C, Ahmed B. et al. Vitamin D status after gastric bypass or sleeve gastrectomy over 4 years of follow-up. Obes Surg 2020; 30: 1473-1481
  • 162 Zhang R, Fu T, Zhao X. et al. Association of circulating irisin levels with adiposity and glucose metabolic profiles in a middle-aged chinese population: a cross-sectional study. Diabetes Metab Syndr Obes 2020; 13: 4105-4112
  • 163 Jia J, Yu F, Wei W-P. et al. Relationship between circulating irisin levels and overweight/obesity: A meta-analysis. World J Clin Cases 2019; 7: 1444-1455
  • 164 Prinz P, Hofmann T, Ahnis A. et al. Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients. Front Neurosci. 2015 9. 199. doi: 10.3389/fnins.2015.00199
  • 165 Lee P, Linderman J, Smith S. et al. Fibroblast growth factor 21 (FGF21) and bone: is there a relationship in humans?. Osteoporos Int 2013; 24: 3053-3057
  • 166 Fjeldborg K, Pedersen SB, Møller HJ. et al. Reduction in serum fibroblast growth factor-21 after gastric bypass is related to changes in hepatic fat content. Surg Obes Relat Dis 2017; 13: 1515-1523
  • 167 Harris L-ALS, Smith GI, Mittendorfer B. et al. Roux-en-Y gastric bypass surgery has unique effects on postprandial FGF21 but not FGF19 secretion. J Clin Endocrinol Metab 2017; 102: 3858-3864
  • 168 Anandhakrishnan A, Korbonits M. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity. World J Diabetes 2016; 7: 572-598
  • 169 Sista F, Abruzzese V, Clementi M. et al. The effect of sleeve gastrectomy on GLP-1 secretion and gastric emptying: a prospective study. Surg Obes Relat Dis 2017; 13: 7-14
  • 170 Jirapinyo P, Jin DX, Qazi T. et al. A meta-analysis of GLP-1 after Roux-En-Y gastric bypass: impact of surgical technique and measurement strategy. Obes Surg 2018; 28: 615-626
  • 171 Cazzo E, Pareja JC, Chaim EA. et al. Comparison of the levels of C-reactive protein, GLP-1 and GLP-2 among individuals with diabetes, morbid obesity and healthy controls: an exploratory study. Arq Gastroenterol 2018; 55: 72-77
  • 172 Laferrère B. Bariatric surgery and obesity: influence on the incretins. Int J Obes Suppl 2016; 6: S32-S36