Subscribe to RSS
DOI: 10.1055/a-1759-4189
GRPr Theranostics: Current Status of Imaging and Therapy using GRPr Targeting Radiopharmaceuticals
GRPr-Theranostik: Aktueller Stand der Bildgebung und Therapie mit GRPr-gerichteten Radiopharmazeutika

Abstract
Addressing molecular targets, that are overexpressed by various tumor entities, using radiolabeled molecules for a combined diagnostic and therapeutic (theranostic) approach is of increasing interest in oncology. The gastrin-releasing peptide receptor (GRPr), which is part of the bombesin family, has shown to be overexpressed in a variety of tumors, therefore, serving as a promising target for those theranostic applications. A large amount of differently radiolabeled bombesin derivatives addressing the GRPr have been evaluated in the preclinical as well as clinical setting showing fast blood clearance and urinary excretion with selective GRPr-binding. Most of the available studies on GRPr-targeted imaging and therapy have evaluated the theranostic approach in prostate and breast cancer applying bombesin derivatives tagged with the predominantly used theranostic pair of 68Ga/177Lu which is the focus of this review.
Zusammenfassung
Die Suche nach molekularen Targets, die bei verschiedenen Tumorarten überexprimiert werden, mit Einsatz radioaktiv markierter Moleküle für einen kombinierten diagnostischen und therapeutischen (theranostischen) Ansatz ist in der Onkologie von zunehmendem Interesse. Es hat sich gezeigt, dass der Rezeptor GRPr („gastrin-releasing peptide receptor“), der zur Familie der Bombesine gehört, in einer Vielzahl von Tumoren überexprimiert wird und daher ein vielversprechendes Ziel für solche theranostischen Anwendungen darstellt. Eine große Zahl unterschiedlich radioaktiv markierter Bombesin-Derivate, die an GRPr binden, wurde sowohl im präklinischen als auch im klinischen Umfeld evaluiert und zeigte eine schnelle Blut-Clearance und Urinausscheidung mit selektiver GRPr-Bindung. Die meisten verfügbaren Studien zur GRPr-basierten Bildgebung und Therapie haben den theranostischen Ansatz bei Prostata- und Brustkrebs untersucht, unter Verwendung von Bombesin-Derivaten, die mit dem vorwiegend eingesetzten theranostischen Paar 68Ga/177Lu markiert sind, das im Mittelpunkt dieser Übersicht steht.
Schlüsselwörter
Theranostika - Gastrin-releasing peptid receptor - Bombesin - Prostatakarzinom - Brustkrebs - Gallium-68/ Lutetium-177Keywords
Theranostics - gastrin-releasing peptide receptor - bombesin - prostate cancer - breast cancer - Gallium-68/ Lutetium-177Publication History
Received: 29 October 2021
Accepted: 22 January 2022
Article published online:
03 June 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Bray F, Ferlay J, Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424
- 2 Hertz S, Roberts A. Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc 1946; 131: 81-86
- 3 Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc 1946; 132: 838-847
- 4 European Medicines Agency (EMA). European public assessment report (EPAR) for SomaKit TOC. 2017
- 5 European Medicines Agency (EMA). European public assessment report (EPAR) for Lutathera. 2016
- 6 Federal Drug Administration (FDA). NETSPOT (kit for the preparation of gallium Ga 68 dotatate injection). 2016
- 7 Sartor O, de Bono J, Chi KN. et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med 2021; 385: 1091-1103
- 8 Xiao D, Wang J, Hampton LL. et al. The human gastrin-releasing peptide receptor gene structure, its tissue expression and promoter. Gene 2001; 264: 95-103
- 9 Cornelio DB, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 2007; 18: 1457-1466
- 10 Cuttitta F, Carney DN, Mulshine J. et al. Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 1985; 316: 823-826
- 11 Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 1999; 59: 1152-1159
- 12 Anastasi A, Erspamer V, Bucci M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 1971; 27: 166-167
- 13 Erspamer V, Erpamer GF, Inselvini M. Some pharmacological actions of alytesin and bombesin. J Pharm Pharmacol 1970; 22: 875-876
- 14 Patel O, Dumesny C, Shulkes A. et al. C-terminal fragments of the gastrin-releasing peptide precursor stimulate cell proliferation via a novel receptor. Endocrinology 2007; 148: 1330-1339
- 15 Kung HJ, Evans CP. Oncogenic activation of androgen receptor. Urol Oncol 2009; 27: 48-52
- 16 McDonald TJ, Jornvall H, Nilsson G. et al. Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 1979; 90: 227-233
- 17 Dijkgraaf I, Franssen GM, McBride WJ. et al. PET of tumors expressing gastrin-releasing peptide receptor with an 18F-labeled bombesin analog. J Nucl Med 2012; 53: 947-952
- 18 Bergmann R, Ruffani A, Graham B. et al. Synthesis and radiopharmacological evaluation of (6)(4)Cu-labeled bombesin analogs featuring a bis(2-pyridylmethyl)-1,4,7-triazacyclononane chelator. Eur J Med Chem 2013; 70: 434-446
- 19 Nanda PK, Pandey U, Bottenus BN. et al. Bombesin analogues for gastrin-releasing peptide receptor imaging. Nucl Med Biol 2012; 39: 461-471
- 20 Pan D, Xu YP, Yang RH. et al. A new (68)Ga-labeled BBN peptide with a hydrophilic linker for GRPR-targeted tumor imaging. Amino Acids 2014; 46: 1481-1489
- 21 Richter S, Wuest M, Krieger SS. et al. Synthesis and radiopharmacological evaluation of a high-affinity and metabolically stabilized 18F-labeled bombesin analogue for molecular imaging of gastrin-releasing peptide receptor-expressing prostate cancer. Nucl Med Biol 2013; 40: 1025-1034
- 22 Varasteh Z, Rosenstrom U, Velikyan I. et al. The effect of mini-PEG-based spacer length on binding and pharmacokinetic properties of a 68Ga-labeled NOTA-conjugated antagonistic analog of bombesin. Molecules 2014; 19: 10455-10472
- 23 Varasteh Z, Mitran B, Rosenstrom U. et al. The effect of macrocyclic chelators on the targeting properties of the 68Ga-labeled gastrin releasing peptide receptor antagonist PEG2-RM26. Nucl Med Biol 2015; 42: 446-454
- 24 Zhang H, Abiraj K, Thorek DL. et al. Evolution of bombesin conjugates for targeted PET imaging of tumors. PLoS One 2012; 7: e44046
- 25 Sah BR, Burger IA, Schibli R. et al. Dosimetry and first clinical evaluation of the new 18F-radiolabeled bombesin analogue BAY 864367 in patients with prostate cancer. J Nucl Med 2015; 56: 372-378
- 26 Parry JJ, Andrews R, Rogers BE. MicroPET imaging of breast cancer using radiolabeled bombesin analogs targeting the gastrin-releasing peptide receptor. Breast Cancer Res Treat 2007; 101: 175-183
- 27 Dalm SU, Bakker IL, de Blois E. et al. 68Ga/177Lu-NeoBOMB1, a Novel Radiolabeled GRPR Antagonist for Theranostic Use in Oncology. J Nucl Med 2017; 58: 293-299
- 28 Dalm SU, Martens JW, Sieuwerts AM. et al. In vitro and in vivo application of radiolabeled gastrin-releasing peptide receptor ligands in breast cancer. J Nucl Med 2015; 56: 752-757
- 29 Gruber L, Jimenez-Franco LD, Decristoforo C. et al. MITIGATE-NeoBOMB1, a Phase I/IIa Study to Evaluate Safety, Pharmacokinetics, and Preliminary Imaging of (68)Ga-NeoBOMB1, a Gastrin-Releasing Peptide Receptor Antagonist, in GIST Patients. J Nucl Med 2020; 61: 1749-1755
- 30 Nock BA, Kaloudi A, Lymperis E. et al. Theranostic Perspectives in Prostate Cancer with the Gastrin-Releasing Peptide Receptor Antagonist NeoBOMB1: Preclinical and First Clinical Results. J Nucl Med 2017; 58: 75-80
- 31 Zhang H, Chen J, Waldherr C. et al. Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res 2004; 64: 6707-6715
- 32 Notni J, Wester HJ. Re-thinking the role of radiometal isotopes: Towards a future concept for theranostic radiopharmaceuticals. J Labelled Comp Radiopharm 2018; 61: 141-153
- 33 Dimitrakopoulou-Strauss A, Hohenberger P, Haberkorn U. et al. 68Ga-labeled bombesin studies in patients with gastrointestinal stromal tumors: comparison with 18F-FDG. J Nucl Med 2007; 48: 1245-1250
- 34 Zhang-Yin J, Provost C, Cancel-Tassin G. et al. A comparative study of peptide-based imaging agents [(68)Ga]Ga-PSMA-11, [(68)Ga]Ga-AMBA, [(68)Ga]Ga-NODAGA-RGD and [(68)Ga]Ga-DOTA-NT-20.3 in preclinical prostate tumour models. Nucl Med Biol 2020; 84: 88-95
- 35 Liu IH, Chang CH, Ho CL. et al. Multimodality imaging and preclinical evaluation of 177Lu-AMBA for human prostate tumours in a murine model. Anticancer Res 2010; 30: 4039-4048
- 36 Lantry LE, Cappelletti E, Maddalena ME. et al. 177Lu-AMBA: Synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 2006; 47: 1144-1152
- 37 Maddalena ME, Fox J, Chen J. et al. 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med 2009; 50: 2017-2024
- 38 Mansi R, Wang X, Forrer F. et al. Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 2009; 15: 5240-5249
- 39 Prignon A, Nataf V, Provost C. et al. (68)Ga-AMBA and (18)F-FDG for preclinical PET imaging of breast cancer: effect of tamoxifen treatment on tracer uptake by tumor. Nucl Med Biol 2015; 42: 92-98
- 40 Baum R, Prasad V, Mutloka N. et al. Molecular imaging of bombesin receptors in various tumors by Ga-68 AMBA PET/CT: First results. Journal of Nuclear Medicine 2007; 48: 79P-79P
- 41 Zhang H, Schuhmacher J, Waser B. et al. DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours. Eur J Nucl Med Mol Imaging 2007; 34: 1198-1208
- 42 Zhang J, Li D, Lang L. et al. 68Ga-NOTA-Aca-BBN(7–14) PET/CT in Healthy Volunteers and Glioma Patients. J Nucl Med 2016; 57: 9-14
- 43 Zhang J, Tian Y, Li D. et al. 68)Ga-NOTA-Aca-BBN(7–14. Eur J Nucl Med Mol Imaging 2019; 46: 2152-2162
- 44 Johnson CV, Shelton T, Smith CJ. et al. Evaluation of combined (177)Lu-DOTA-8-AOC-BBN (7–14)NH(2) GRP receptor-targeted radiotherapy and chemotherapy in PC-3 human prostate tumor cell xenografted SCID mice. Cancer Biother Radiopharm 2006; 21: 155-166
- 45 Smith CJ, Gali H, Sieckman GL. et al. Radiochemical investigations of 177Lu-DOTA-8-Aoc-BBN[7–14]NH2: an in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. Nucl Med Biol 2003; 30: 101-109
- 46 Koumarianou E, Mikolajczak R, Pawlak D. et al. Comparative study on DOTA-derivatized bombesin analog labeled with 90Y and 177Lu: in vitro and in vivo evaluation. Nucl Med Biol 2009; 36: 591-603
- 47 Aranda-Lara L, Ferro-Flores G, Azorin-Vega E. et al. Synthesis and evaluation of Lys(1)(alpha,gamma-Folate)Lys(3)((1)(7)(7)Lu-DOTA)-Bombesin(1–14) as a potential theranostic radiopharmaceutical for breast cancer. Appl Radiat Isot 2016; 107: 214-219
- 48 Gibbens-Bandala B, Morales-Avila E, Ferro-Flores G. et al. (177)Lu-Bombesin-PLGA (paclitaxel): A targeted controlled-release nanomedicine for bimodal therapy of breast cancer. Mater Sci Eng C Mater Biol Appl 2019; 105: 110043
- 49 Gibbens-Bandala B, Morales-Avila E, Ferro-Flores G. et al. Synthesis and Evaluation of (177)Lu-DOTA-DN(PTX)-BN for Selective and Concomitant Radio and Drug-Therapeutic Effect on Breast Cancer Cells. Polymers (Basel) 2019; 11
- 50 Mansi R, Wang X, Forrer F. et al. Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging 2011; 38: 97-107
- 51 Dumont RA, Tamma M, Braun F. et al. Targeted radiotherapy of prostate cancer with a gastrin-releasing peptide receptor antagonist is effective as monotherapy and in combination with rapamycin. J Nucl Med 2013; 54: 762-769
- 52 Reynolds TS, Bandari RP, Jiang Z. et al. Lutetium-177 Labeled Bombesin Peptides for Radionuclide Therapy. Curr Radiopharm 2016; 9: 33-43
- 53 Han S, Woo S, Kim YJ. et al. Impact of (68)Ga-PSMA PET on the Management of Patients with Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol 2018; 74: 179-190
- 54 Michalski K, Stoykow C, Bronsert P. et al. Association between gastrin-releasing peptide receptor expression as assessed with [(68)Ga]Ga-RM2 PET/CT and histopathological tumor regression after neoadjuvant chemotherapy in primary breast cancer. Nucl Med Biol 2020; 86–87: 37-43
- 55 Roivainen A, Kahkonen E, Luoto P. et al. Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist BAY 86–7548 in healthy men. J Nucl Med 2013; 54: 867-872
- 56 Kahkonen E, Jambor I, Kemppainen J. et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86–7548. Clin Cancer Res 2013; 19: 5434-5443
- 57 Minamimoto R, Hancock S, Schneider B. et al. Pilot Comparison of (6)(8)Ga-RM2 PET and (6)(8)Ga-PSMA-11 PET in Patients with Biochemically Recurrent Prostate Cancer. J Nucl Med 2016; 57: 557-562
- 58 Minamimoto R, Sonni I, Hancock S. et al. Prospective Evaluation of (68)Ga-RM2 PET/MRI in Patients with Biochemical Recurrence of Prostate Cancer and Negative Findings on Conventional Imaging. J Nucl Med 2018; 59: 803-808
- 59 Wieser G, Popp I, Christian Rischke H. et al. Diagnosis of recurrent prostate cancer with PET/CT imaging using the gastrin-releasing peptide receptor antagonist (68)Ga-RM2: Preliminary results in patients with negative or inconclusive [(18)F]Fluoroethylcholine-PET/CT. Eur J Nucl Med Mol Imaging 2017; 44: 1463-1472
- 60 Touijer KA, Michaud L, Alvarez HAV. et al. Prospective Study of the Radiolabeled GRPR Antagonist BAY86–7548 for Positron Emission Tomography/Computed Tomography Imaging of Newly Diagnosed Prostate Cancer. Eur Urol Oncol 2019; 2: 166-173
- 61 Hoberuck S, Michler E, Wunderlich G. et al. 68Ga-RM2 PET in PSMA- positive and -negative prostate cancer patients. Nuklearmedizin 2019; 58: 352-362
- 62 Fassbender TF, Schiller F, Mix M. et al. Accuracy of [(68)Ga]Ga-RM2-PET/CT for diagnosis of primary prostate cancer compared to histopathology. Nucl Med Biol 2019; 70: 32-38
- 63 Fassbender TF, Schiller F, Zamboglou C. et al. Voxel-based comparison of [(68)Ga]Ga-RM2-PET/CT and [(68)Ga]Ga-PSMA-11-PET/CT with histopathology for diagnosis of primary prostate cancer. EJNMMI Res 2020; 10: 62
- 64 Schollhammer R, de Clermont Gallerande H, Robert G. et al. 68Ga-PSMA-617 Compared With 68Ga-RM2 and 18F-FCholine PET/CT for the Initial Staging of High-Risk Prostate Cancer. Clin Nucl Med 2019; 44: e535-e536
- 65 Baratto L, Duan H, Laudicella R. et al. Physiological (68)Ga-RM2 uptake in patients with biochemically recurrent prostate cancer: an atlas of semi-quantitative measurements. Eur J Nucl Med Mol Imaging 2020; 47: 115-122
- 66 Perera M, Papa N, Roberts M. et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer-Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur Urol 2020; 77: 403-417
- 67 Kurth J, Krause BJ, Schwarzenbock SM. et al. First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [(177)Lu]Lu-RM2: a radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2020; 47: 123-135
- 68 Maina T, Bergsma H, Kulkarni HR. et al. Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [(6)(8)Ga]SB3 and PET/CT. Eur J Nucl Med Mol Imaging 2016; 43: 964-973
- 69 Lymperis E, Kaloudi A, Sallegger W. et al. Radiometal-Dependent Biological Profile of the Radiolabeled Gastrin-Releasing Peptide Receptor Antagonist SB3 in Cancer Theranostics: Metabolic and Biodistribution Patterns Defined by Neprilysin. Bioconjug Chem 2018; 29: 1774-1784
- 70 Chatalic KL, Konijnenberg M, Nonnekens J. et al. In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and Radionuclide Therapy of Prostate Cancer in Preclinical Studies. Theranostics 2016; 6: 104-117
- 71 Sun Y, Ma X, Zhang Z. et al. Preclinical Study on GRPR-Targeted (68)Ga-Probes for PET Imaging of Prostate Cancer. Bioconjug Chem 2016; 27: 1857-1864
- 72 Lim JC, Cho EH, Kim JJ. et al. Biological evaluation of (177)Lu-labeled DOTA-Ala(SO3H)-Aminooctanoyl-Gln-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH2 for gastrin-releasing peptide receptor-positive prostate tumor targeting. Nucl Med Biol 2015; 42: 131-136
- 73 Zhang J, Niu G, Fan X. et al. PET Using a GRPR Antagonist (68)Ga-RM26 in Healthy Volunteers and Prostate Cancer Patients. J Nucl Med 2018; 59: 922-928
- 74 Cheng S, Lang L, Wang Z. et al. Positron Emission Tomography Imaging of Prostate Cancer with Ga-68-Labeled Gastrin-Releasing Peptide Receptor Agonist BBN7–14 and Antagonist RM26. Bioconjug Chem 2018; 29: 410-419
- 75 Mitran B, Rinne SS, Konijnenberg MW. et al. Trastuzumab cotreatment improves survival of mice with PC-3 prostate cancer xenografts treated with the GRPR antagonist (177) Lu-DOTAGA-PEG2 -RM26. Int J Cancer 2019; 145: 3347-3358
- 76 Rinne SS, Abouzayed A, Gagnon K. et al. 66)Ga-PET-imaging of GRPR-expression in prostate cancer: production and characterization of [(66)Ga. Sci Rep 2021; 11: 3631
- 77 Zang J, Liu Q, Sui H. et al. Combined (68)Ga-NOTA-Evans Blue Lymphoscintigraphy and (68)Ga-NOTA-RM26 PET/CT Evaluation of Sentinel Lymph Node Metastasis in Breast Cancer Patients. Bioconjug Chem 2020; 31: 396-403
- 78 Zang J, Mao F, Wang H. et al. 68Ga-NOTA-RM26 PET/CT in the Evaluation of Breast Cancer: A Pilot Prospective Study. Clin Nucl Med 2018; 43: 663-669
- 79 Gnesin S, Cicone F, Mitsakis P. et al. First in-human radiation dosimetry of the gastrin-releasing peptide (GRP) receptor antagonist (68)Ga-NODAGA-MJ9. EJNMMI Res 2018; 8: 108
- 80 Lau J, Rousseau E, Zhang Z. et al. Positron Emission Tomography Imaging of the Gastrin-Releasing Peptide Receptor with a Novel Bombesin Analogue. ACS Omega 2019; 4: 1470-1478
- 81 Rousseau E, Lau J, Zhang Z. et al. Comparison of biological properties of [(177) Lu]Lu-ProBOMB1 and [(177) Lu]Lu-NeoBOMB1 for GRPR targeting. J Labelled Comp Radiopharm 2020; 63: 56-64
- 82 Ferguson S, Wuest M, Richter S. et al. A comparative PET imaging study of (44g)Sc- and (68)Ga-labeled bombesin antagonist BBN2 derivatives in breast and prostate cancer models. Nucl Med Biol 2020; 90–91: 74-83
- 83 Dalm SU, Sieuwerts AM, Look MP. et al. Clinical Relevance of Targeting the Gastrin-Releasing Peptide Receptor, Somatostatin Receptor 2, or Chemokine C-X-C Motif Receptor 4 in Breast Cancer for Imaging and Therapy. J Nucl Med 2015; 56: 1487-1493
- 84 Baidoo KE, Lin KS, Zhan Y. et al. Design, synthesis, and initial evaluation of high-affinity technetium bombesin analogues. Bioconjug Chem 1998; 9: 218-225
- 85 Van de Wiele C, Dumont F, van Belle S. et al. Is there a role for agonist gastrin-releasing peptide receptor radioligands in tumour imaging?. Nucl Med Commun 2001; 22: 5-15
- 86 La Bella R, Garcia-Garayoa E, Langer M. et al. In vitro and in vivo evaluation of a 99mTc(I)-labeled bombesin analogue for imaging of gastrin releasing peptide receptor-positive tumors. Nucl Med Biol 2002; 29: 553-560
- 87 Nock B, Nikolopoulou A, Chiotellis E. et al. [99mTc]Demobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur J Nucl Med Mol Imaging 2003; 30: 247-258
- 88 Cescato R, Maina T, Nock B. et al. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med 2008; 49: 318-326
- 89 Mansi R, Minamimoto R, Macke H. et al. Bombesin-Targeted PET of Prostate Cancer. J Nucl Med 2016; 57: 67S-72S
- 90 Abiraj K, Mansi R, Tamma ML. et al. Bombesin antagonist-based radioligands for translational nuclear imaging of gastrin-releasing peptide receptor-positive tumors. J Nucl Med 2011; 52: 1970-1978
- 91 Baratto L, Duan H, Macke H. et al. Imaging the Distribution of Gastrin-Releasing Peptide Receptors in Cancer. J Nucl Med 2020; 61: 792-798
- 92 Mitran B, Thisgaard H, Rosenstrom U. et al. High Contrast PET Imaging of GRPR Expression in Prostate Cancer Using Cobalt-Labeled Bombesin Antagonist RM26. Contrast Media Mol Imaging 2017; 2017: 6873684
- 93 Mitran B, Varasteh Z, Selvaraju RK. et al. Selection of optimal chelator improves the contrast of GRPR imaging using bombesin analogue RM26. Int J Oncol 2016; 48: 2124-2134
- 94 Reubi C, Gugger M, Waser B. Co-expressed peptide receptors in breast cancer as a molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 2002; 29: 855-862
- 95 Reubi JC, Wenger S, Schmuckli-Maurer J. et al. Bombesin receptor subtypes in human cancers: detection with the universal radioligand (125)I-[D-TYR(6), beta-ALA(11), PHE(13), NLE(14)] bombesin(6–14). Clin Cancer Res 2002; 8: 1139-1146
- 96 von Eyben FE, Picchio M, von Eyben R. et al. (68)Ga-Labeled Prostate-specific Membrane Antigen Ligand Positron Emission Tomography/Computed Tomography for Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Focus 2018; 4: 686-693
- 97 Hope TA, Goodman JZ, Allen IE. et al. Metaanalysis of (68)Ga-PSMA-11 PET Accuracy for the Detection of Prostate Cancer Validated by Histopathology. J Nucl Med 2019; 60: 786-793
- 98 Kim SJ, Lee SW, Ha HK. Diagnostic Performance of Radiolabeled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Primary Lymph Node Staging in Newly Diagnosed Intermediate to High-Risk Prostate Cancer Patients: A Systematic Review and Meta-Analysis. Urol Int 2019; 102: 27-36
- 99 Hofman MS, Violet J, Hicks RJ. et al. (177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial. Lancet Oncol 2018; 19: 825-833
- 100 Violet J, Sandhu S, Iravani A. et al. Long-Term Follow-up and Outcomes of Retreatment in an Expanded 50-Patient Single-Center Phase II Prospective Trial of (177)Lu-PSMA-617 Theranostics in Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2020; 61: 857-865
- 101 Hofman MS, Emmett L, Sandhu S. et al. (177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP. Lancet 2021; 397: 797-804
- 102 Eiber M, Weirich G, Holzapfel K. et al. Simultaneous (68)Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. Eur Urol 2016; 70: 829-836
- 103 Maurer T, Gschwend JE, Rauscher I. et al. Diagnostic Efficacy of (68)Gallium-PSMA Positron Emission Tomography Compared to Conventional Imaging for Lymph Node Staging of 130 Consecutive Patients with Intermediate to High Risk Prostate Cancer. J Urol 2016; 195: 1436-1443
- 104 Beer M, Montani M, Gerhardt J. et al. Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. Prostate 2012; 72: 318-325
- 105 Wieser G, Mansi R, Grosu AL. et al. Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist--from mice to men. Theranostics 2014; 4: 412-419
- 106 Mansour N, Paquette M, Ait-Mohand S. et al. Evaluation of a novel GRPR antagonist for prostate cancer PET imaging: [(64)Cu]-DOTHA2-PEG-RM26. Nucl Med Biol 2018; 56: 31-38
- 107 Oroujeni M, Abouzayed A, Lundmark F. et al. Evaluation of Tumor-Targeting Properties of an Antagonistic Bombesin Analogue RM26 Conjugated with a Non-Residualizing Radioiodine Label Comparison with a Radiometal-Labelled Counterpart. Pharmaceutics 2019; 11
- 108 Baun C, Mitran B, Rinne SS. et al. Preclinical Evaluation of the Copper-64 Labeled GRPR-Antagonist RM26 in Comparison with the Cobalt-55 Labeled Counterpart for PET-Imaging of Prostate Cancer. Molecules 2020; 25
- 109 Abouzayed A, Rinne SS, Sabahnoo H. et al. Preclinical Evaluation of (99m)Tc-Labeled GRPR Antagonists maSSS/SES-PEG2-RM26 for Imaging of Prostate Cancer. Pharmaceutics 2021; 13
- 110 Mitran B, Tolmachev V, Orlova A. Radiolabeled GRPR Antagonists for Imaging of Disseminated Prostate Cancer – Influence of Labeling Chemistry on Targeting Properties. Curr Med Chem 2020; 27: 7090-7111
- 111 Baratto L, Song H, Duan H. et al. PSMA- and GRPR-targeted PET: Results from 50 Patients with Biochemically Recurrent Prostate Cancer. J Nucl Med 2021;
- 112 Haendeler M, Khawar A, Ahmadzadehfar H. et al. Biodistribution and Radiation Dosimetric Analysis of [68Ga]Ga-RM2: A Potent GRPR Antagonist in Prostate Carcinoma Patients. Radiation 2021; 1: 33-44
- 113 Nagasaki S, Nakamura Y, Maekawa T. et al. Immunohistochemical analysis of gastrin-releasing peptide receptor (GRPR) and possible regulation by estrogen receptor betacx in human prostate carcinoma. Neoplasma 2012; 59: 224-232
- 114 de Visser M, van Weerden WM, de Ridder CM. et al. Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. J Nucl Med 2007; 48: 88-93
- 115 Schroeder RP, de Visser M, van Weerden WM. et al. Androgen-regulated gastrin-releasing peptide receptor expression in androgen-dependent human prostate tumor xenografts. Int J Cancer 2010; 126: 2826-2834
- 116 Cardoso F, Paluch-Shimon S, Senkus E. et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol 2020; 31: 1623-1649
- 117 Gradishar WJ, Anderson BO, Abraham J. et al. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18: 452-478
- 118 Deutsche Krebsgesellschaft DK, AWMF. Leitlinienprogramm Onkologie, Version 4.4, 2021, AWMF Registernummer: 032–045OL. Accessed October 01, 2021 at: http://www.leitlinienprogramm-onkologie.de/leitlinien/mammakarzinom/
- 119 Department of Health. Diagnosis, staging and treatment of patients with breast cancer. National Clinical Guideline No. 7. June 2015. ISSN 2009–6259.
- 120 Sun Z, Yi YL, Liu Y. et al. Comparison of whole-body PET/PET-CT and conventional imaging procedures for distant metastasis staging in patients with breast cancer: a meta-analysis. Eur J Gynaecol Oncol 2015; 36: 672-676
- 121 Tamura K, Kurihara H, Yonemori K. et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J Nucl Med 2013; 54: 1869-1875
- 122 Rainone P, Riva B, Belloli S. et al. Development of (99m)Tc-radiolabeled nanosilica for targeted detection of HER2-positive breast cancer. Int J Nanomedicine 2017; 12: 3447-3461
- 123 Sorensen J, Sandberg D, Sandstrom M. et al. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med 2014; 55: 730-735
- 124 Li L, Wu Y, Wang Z. et al. SPECT/CT Imaging of the Novel HER2-Targeted Peptide Probe (99m)Tc-HYNIC-H6F in Breast Cancer Mouse Models. J Nucl Med 2017; 58: 821-826
- 125 Perik PJ, Lub-De Hooge MN, Gietema JA. et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 2006; 24: 2276-2282
- 126 Mortimer JE, Bading JR, Colcher DM. et al. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using (64)Cu-DOTA-trastuzumab PET. J Nucl Med 2014; 55: 23-29
- 127 Gaykema SB, Schroder CP, Vitfell-Rasmussen J. et al. 89Zr-trastuzumab and 89Zr-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin Cancer Res 2014; 20: 3945-3954
- 128 Gebhart G, Lamberts LE, Wimana Z. et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann Oncol 2016; 27: 619-624
- 129 Baum RP, Prasad V, Muller D. et al. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J Nucl Med 2010; 51: 892-897
- 130 Xavier C, Blykers A, Vaneycken I. et al. (18)F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl Med Biol 2016; 43: 247-252
- 131 Keyaerts M, Xavier C, Heemskerk J. et al. Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma. J Nucl Med 2016; 57: 27-33
- 132 Beylergil V, Morris PG, Smith-Jones PM. et al. Pilot study of 68Ga-DOTA-F(ab')2-trastuzumab in patients with breast cancer. Nucl Med Commun 2013; 34: 1157-1165
- 133 Smith-Jones PM, Solit D, Afroze F. et al. Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med 2006; 47: 793-796
- 134 Kurland BF, Peterson LM, Lee JH. et al. Estrogen Receptor Binding (18F-FES PET) and Glycolytic Activity (18F-FDG PET) Predict Progression-Free Survival on Endocrine Therapy in Patients with ER+ Breast Cancer. Clin Cancer Res 2017; 23: 407-415
- 135 Fowler AM, Clark AS, Katzenellenbogen JA. et al. Imaging Diagnostic and Therapeutic Targets: Steroid Receptors in Breast Cancer. J Nucl Med 2016; 57: 75S-80S
- 136 Chae SY, Kim SB, Ahn SH. et al. A Randomized Feasibility Study of (18)F-Fluoroestradiol PET to Predict Pathologic Response to Neoadjuvant Therapy in Estrogen Receptor-Rich Postmenopausal Breast Cancer. J Nucl Med 2017; 58: 563-568
- 137 Mintun MA, Welch MJ, Siegel BA. et al. Breast cancer: PET imaging of estrogen receptors. Radiology 1988; 169: 45-48
- 138 Peterson LM, Mankoff DA, Lawton T. et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 2008; 49: 367-374
- 139 Mortimer JE, Dehdashti F, Siegel BA. et al. Positron emission tomography with 2-[18F]Fluoro-2-deoxy-D-glucose and 16alpha-[18F]fluoro-17beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res 1996; 2: 933-939
- 140 Gemignani ML, Patil S, Seshan VE. et al. Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer. J Nucl Med 2013; 54: 1697-1702
- 141 Lebron L, Greenspan D, Pandit-Taskar N. PET Imaging of Breast Cancer: Role in Patient Management. PET Clin 2015; 10: 159-195
- 142 Dehdashti F, Laforest R, Gao F. et al. Assessment of progesterone receptors in breast carcinoma by PET with 21–18F-fluoro-16alpha,17alpha-[(R)-(1'-alpha-furylmethylidene)dioxy]-19-norpregn- 4-ene-3,20-dione. J Nucl Med 2012; 53: 363-370
- 143 Chan SR, Fowler AM, Allen JA. et al. Longitudinal noninvasive imaging of progesterone receptor as a predictive biomarker of tumor responsiveness to estrogen deprivation therapy. Clin Cancer Res 2015; 21: 1063-1070
- 144 Reubi JC, Waser B, Foekens JA. et al. Somatostatin receptor incidence and distribution in breast cancer using receptor autoradiography: relationship to EGF receptors. Int J Cancer 1990; 46: 416-420
- 145 van Eijck CH, Krenning EP, Bootsma A. et al. Somatostatin-receptor scintigraphy in primary breast cancer. Lancet 1994; 343: 640-643
- 146 Chiti A, Agresti R, Maffioli LS. et al. Breast cancer staging using technetium-99m sestamibi and indium-111 pentetreotide single-photon emission tomography. Eur J Nucl Med 1997; 24: 192-196
- 147 Schulz S, Helmholz T, Schmitt J. et al. True positive somatostatin receptor scintigraphy in primary breast cancer correlates with expression of sst2A and sst5. Breast Cancer Res Treat 2002; 72: 221-226
- 148 Van Den Bossche B, D'Haeninck E, De Vos F. et al. Oestrogen-mediated regulation of somatostatin receptor expression in human breast cancer cell lines assessed with 99mTc-depreotide. Eur J Nucl Med Mol Imaging 2004; 31: 1022-1030
- 149 Van Den Bossche B, Van Belle S, De Winter F. et al. Early prediction of endocrine therapy effect in advanced breast cancer patients using 99mTc-depreotide scintigraphy. J Nucl Med 2006; 47: 6-13
- 150 Dalm SU, Melis M, Emmering J. et al. Breast cancer imaging using radiolabelled somatostatin analogues. Nucl Med Biol 2016; 43: 559-565
- 151 Sathekge M, Lengana T, Modiselle M. et al. (68)Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients. Eur J Nucl Med Mol Imaging 2017; 44: 689-694
- 152 Sathekge M, Modiselle M, Vorster M. et al. (68)Ga-PSMA imaging of metastatic breast cancer. Eur J Nucl Med Mol Imaging 2015; 42: 1482-1483
- 153 Miladinova D. Molecular Imaging in Breast Cancer. Nucl Med Mol Imaging 2019; 53: 313-319
- 154 Bold RJ, Ishizuka J, Yao CZ. et al. Bombesin stimulates in vitro growth of human breast cancer independent of estrogen receptors status. Anticancer Res 1998; 18: 4051-4056
- 155 Nelson J, Donnelly M, Walker B. et al. Bombesin stimulates proliferation of human breast cancer cells in culture. Br J Cancer 1991; 63: 933-936
- 156 Yano T, Pinski J, Groot K. et al. Stimulation by bombesin and inhibition by bombesin/gastrin-releasing peptide antagonist RC-3095 of growth of human breast cancer cell lines. Cancer Res 1992; 52: 4545-4547
- 157 Gugger M, Reubi JC. Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am J Pathol 1999; 155: 2067-2076
- 158 Morgat C, MacGrogan G, Brouste V. et al. Expression of Gastrin-Releasing Peptide Receptor in Breast Cancer and Its Association with Pathologic, Biologic, and Clinical Parameters: A Study of 1,432 Primary Tumors. J Nucl Med 2017; 58: 1401-1407
- 159 Kaloudi A, Lymperis E, Giarika A. et al. NeoBOMB1, a GRPR-Antagonist for Breast Cancer Theragnostics: First Results of a Preclinical Study with [(67)Ga]NeoBOMB1 in T-47D Cells and Tumor-Bearing Mice. Molecules 2017; 22
- 160 Stoykow C, Erbes T, Maecke HR. et al. Gastrin-releasing Peptide Receptor Imaging in Breast Cancer Using the Receptor Antagonist (68)Ga-RM2 And PET. Theranostics 2016; 6: 1641-1650
- 161 Wild D, Frischknecht M, Zhang H. et al. Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res 2011; 71: 1009-1018
- 162 Zhang J, Mao F, Niu G. et al. (68)Ga-BBN-RGD PET/CT for GRPR and Integrin alphavbeta3 Imaging in Patients with Breast Cancer. Theranostics 2018; 8: 1121-1130
- 163 Dalm SU, Schrijver WA, Sieuwerts AM. et al. Prospects of Targeting the Gastrin Releasing Peptide Receptor and Somatostatin Receptor 2 for Nuclear Imaging and Therapy in Metastatic Breast Cancer. PLoS One 2017; 12: e0170536
- 164 Li ZB, Wu Z, Chen K. et al. 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med 2008; 49: 453-461
- 165 Stott Reynolds TJ, Schehr R, Liu D. et al. Characterization and evaluation of DOTA-conjugated Bombesin/RGD-antagonists for prostate cancer tumor imaging and therapy. Nucl Med Biol 2015; 42: 99-108
- 166 Zhang J, Niu G, Lang L. et al. Clinical Translation of a Dual Integrin alphavbeta3- and Gastrin-Releasing Peptide Receptor-Targeting PET Radiotracer, 68Ga-BBN-RGD. J Nucl Med 2017; 58: 228-234
- 167 Bandari RP, Jiang Z, Reynolds TS. et al. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7–14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer. Nucl Med Biol 2014; 41: 355-363
- 168 Eder M, Schafer M, Bauder-Wust U. et al. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate 2014; 74: 659-668
- 169 Abouzayed A, Yim CB, Mitran B. et al. Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer. Pharmaceutics 2019; 11
- 170 Lundmark F, Abouzayed A, Mitran B. et al. Heterodimeric Radiotracer Targeting PSMA and GRPR for Imaging of Prostate Cancer-Optimization of the Affinity towards PSMA by Linker Modification in Murine Model. Pharmaceutics 2020; 12
- 171 Mitran B, Varasteh Z, Abouzayed A. et al. Bispecific GRPR-Antagonistic Anti-PSMA/GRPR Heterodimer for PET and SPECT Diagnostic Imaging of Prostate Cancer. Cancers (Basel) 2019; 11
- 172 Rivera-Bravo B, Ramirez-Nava G, Mendoza-Figueroa MJ. et al. [(68)Ga]Ga-iPSMA-Lys(3)-Bombesin: Biokinetics, dosimetry and first patient PET/CT imaging. Nucl Med Biol 2021; 96–97: 54-60
- 173 Escudero-Castellanos A, Ocampo-Garcia B, Ferro-Flores G. et al. Synthesis and preclinical evaluation of the 177Lu-DOTA-PSMA(inhibitor)-Lys3-bombesin heterodimer designed as a radiotheranostic probe for prostate cancer. Nucl Med Commun 2019; 40: 278-286