Synthesis 2022; 54(12): 2765-2777
DOI: 10.1055/a-1755-3476
short review

C(sp3)–F Bond Transformation of Perfluoroalkyl Compounds Mediated by Visible-Light Photocatalysis: Spin-Center Shifts and Radical/Polar Crossover Processes via Anionic Intermediates

a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
,
Naoki Sugihara
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
,
Makoto Yasuda
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
b   Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
› Author Affiliations
This work was supported by the Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) (Grant No. JPMJCR20R3), the Ministry of Education, Culture, Sports, Science & Technology, Japan, Grant-in-Aid for Transformative Research Areas (A), Digitalization-driven Transformative Organic Synthesis (Digi-TOS) (Grant No. 21H05212), and the Japan Society for the Promotion of Science (JSPS), KAKENHI (Grant No. JP19K05455.


Abstract

Due to its large bond energy, precisely controllable C–F bond activation is a significant challenge in organic synthesis. A single C(sp3)–F bond transformation of perfluoroalkyl groups is particularly desirable to supply functionalized perfluoroalkyl compounds offering properties that are potentially useful in pharmaceutical and materials chemistry. Recently, the single defluorinative transformation of perfluoroalkyl compounds has been developed via visible-light photocatalysis. Herein, we summarize this field via two main topics. Topic 1 covers the transformations of C(sp3)–F bonds in either perfluoroalkylarenes or perfluoroalkane carbonyl compounds via a defluorinative spin-center shift in the radical anion intermediates. Topic 2 addresses the defluorinative transformations of α-trifluoromethyl alkenes to give gem-difluoroalkenes via a radical/polar crossover process.

1 Introduction

2 C(sp3)–F Transformations via Defluorinative Spin-Center Shifts

3 C(sp3)–F Transformations via a Radical/Polar Crossover Process

4 Conclusions



Publication History

Received: 03 January 2022

Accepted after revision: 31 January 2022

Accepted Manuscript online:
31 January 2022

Article published online:
09 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany