Subscribe to RSS
DOI: 10.1055/a-1747-5457
Base/B2pin2-Mediated Iodofluoroalkylation of Alkynes and Alkenes
We acknowledge the National Natural Science Foundation of China (Grant nos. 21861031, 21362025), Institute Local Cooperation Project of the Chinese Academy of Engineering (2019NXZD1), Key Research and Development Program of Ningxia (022104030009, 2021BEG02001, 2021BEE03003), and National First-rate Discipline Construction Project of Ningxia (Chemical Engineering and Technology) (NXYLXK2017A04).

Abstract
A base/B2pin2-mediated iodofluoroalkylation of alkynes and a part of alkenes, using ethyl difluoroiodoacetate (ICF2CO2Et) or ICnF2n+1 (n = 3, 4, 6) as difluoroacetylating or perfluoroalkylating reagent, is disclosed. The reaction proceeds under mild conditions, and iododifluoroalkylation, hydrodifluoroalkylation and several perfluoroalkylation products were generated from alkynes or alkenes. Notably, this methodology provides a simple access to difluoroalkylated and perfluoroalkylated organic compounds starting from simple alkynes or alkenes.
Key words
iodofluoroalkylation - alkynes - alkenes - ethyl 2,2-difluoro-2-iodoacetate - hydrodifluoroalkylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1747-5457.
- Supporting Information
Publication History
Received: 18 November 2021
Accepted after revision: 21 January 2022
Accepted Manuscript online:
21 January 2022
Article published online:
19 May 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 1b Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 1c Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
- 2a Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
- 2b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 2c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 2d Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 2e Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
- 2f Landelle G. Curr. Top. Med. Chem. 2014; 14: 941
- 2g Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 4a Wu GJ, von Wangelin A. Chem. Sci. 2018; 9: 1795
- 4b Xu T, Cheung CW, Hu XL. Angew. Chem. Int. Ed. 2014; 53: 4910
- 4c Li G, Cao YX, Luo C, Su G. Org. Lett. 2016; 18: 4806
- 4d Li G, Wang T, Fei F, Su Y.-M, Li Y, Lan Q, Wang X.-S. Angew. Chem. Int. Ed. 2016; 55: 3491
- 4e Xiong H, Li Y, Qian B, Wei R, Van der Eycken EV, Bao H. Org. Lett. 2019; 21: 776
- 4f Zhang PB, Ying JX, Tang G, Zhao YF. Org. Chem. Front. 2017; 4: 2054
- 4g Li DK, Mao TT, Huang JB, Zhu Q. J. Org. Chem. 2018; 83: 10445
- 4h Feng XR, Wang XY, Chen HT, Tang XY, Guo MJ, Zhao WT, Wang GW. Org. Biomol. Chem. 2018; 16: 2841
- 4i Deng W, Li Y, Li Y.-G, Bao H. Synthesis 2018; 50: 2974
- 5a Wallentin CJ, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
- 5b Zhong JJ, Yang C, Chang XY, Zou C, Lu W, Che CM. Chem. Commun. 2017; 53: 8948
- 5c Mizuta S, Verhoog S, Engle KM, Khotavivattana T, O’Duill M, Wheelhouse K, Rassias G, Médebielle M, Gouverneur V. J. Am. Chem. Soc. 2013; 135: 2505
- 5d Iqbal N, Jung J, Park S, Cho EJ. Angew. Chem. Int. Ed. 2014; 53: 539
- 5e Rawner T, Lutsker E, Kaiser CA, Reiser O. ACS Catal. 2018; 8: 3950
- 5f Yu C, Iqbal N, Park S, Cho EJ. Chem. Commun. 2014; 50: 12884
- 5g Yajima T, Ikegami M. Eur. J. Org. Chem. 2017; 2126
- 5h Li LX, Ma YN, Tang M, Guo J, Yang Z, Yan YZ, Ma XT, Tang L. Adv. Synth. Catal. 2019; 361: 3723
- 5i Liu Y, Chen XL, Sun K, Li XY, Zeng FL, Liu XC, Qu LB, Zhao YF, Yu B. Org. Lett. 2019; 21: 4019
- 5j Zeng FL, Sun K, Chen XL, Yuan XY, He SQ, Liu Y, Peng YY, Qu LB, Lv QY, Yu B. Adv. Synth. Catal. 2019; 361: 5176
- 6a Fang X, Yang XY, Yang XJ, Mao SJ, Wang ZH, Chen GR, Wu FH. Tetrahedron 2007; 63: 10684
- 6b Motoda D, Kinoshita H, Shinokubo H, Oshima K. Adv. Synth. Catal. 2002; 344: 261
- 6c Jennings MP, Cork EA, Ramachandran PV. J. Org. Chem. 2000; 65: 8763
- 6d Li Y, Li H, Hu J. Tetrahedron 2009; 65: 478
- 6e Wang DF, Wu JJ, Huang JW, Liang JQ, Peng P, Chen H, Wu FH. Tetrahedron 2017; 73: 3478
- 7a Domański S, Chaładaj W. ACS Catal. 2016; 6: 3452
- 7b Guo WH, Zhao HY, Luo ZJ, Zhang S, Zhang X. ACS Catal. 2019; 9: 38
- 8 Wang S, Zhang J, Kong L, Tan Z, Bai Y, Zhu G. Org. Lett. 2018; 20: 5631
- 9 Guo W.-H, Zhao H.-Y, Luo Z.-J, Zhang S, Zhang X. ACS Catal. 2019; 9: 38
- 10 Ma J.-J, Yi W.-B. Org. Biomol. Chem. 2017; 15: 4295
- 11 Li X, He S, Song Q. Org. Lett. 2021; 23: 2994
- 12 Li K, Zhang X, Chen J, Gao Y, Yang C, Zhang K, Zhou Y, Fan B. Org. Lett. 2019; 21: 9914
- 13 Ji Y.-X, Wang L.-J, Guo W.-S, Bi Q, Zhang B. Adv. Synth. Catal. 2020; 362: 1131
- 14a Ke M, Song Q. J. Org. Chem. 2016; 81: 3654
- 14b Ke M, Feng Q, Yang K. Org. Chem. Front. 2016; 3: 150
- 14c Ke M, Song Q. Chem. Commun. 2017; 53: 2222
- 14d Li D, Mao T, Huang J, Zhu Q. Chem. Commun. 2017; 53: 3450
- 15a Zhang H, Song Y, Zhao J, Zhang J, Zhang Q. Angew. Chem. Int. Ed. 2014; 53: 11079
- 15b Parkin G. Organometallics 2006; 25: 4744
- 15c Ilchenko NO, Janson PG, Szabó KJ. Chem. Commun. 2013; 49: 6614
- 15d Moret ME, Zhang L, Peters JC. J. Am. Chem. Soc. 2013; 135: 3792
- 16a Xiao Y, Chun YK, Cheng SC. Org. Biomol. Chem. 2020; 18: 8686
- 16b Mao T, Ma M.-J, Zhao L, Xue D.-P, Yu Y, Gu J, He C.-Y. Chem. Commun. 2020; 56: 1815
- 17 Rao M, Wei Z, Yuan Y. ChemCatChem 2020; 12: 5256
- 18 Rao M, Wei Z, Yuan Y. Tetrahedron Lett. 2020; 61: 152558
- 19a Zhang YL, Guo RT, Luo H. Org. Lett. 2020; 22: 5627
- 19b Huang Y, Lei YY, Zhao L. Chem. Commun. 2018; 54: 13662
- 19c Suliman AM. Y, Ahmed EA. M. A, Gong TJ. Org. Lett. 2021; 23: 3259
- 19d Wang X, Zhao S, Liu J. Org. Lett. 2017; 19: 4187
- 20a Cheng Y, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2018; 57: 16832
- 20b Zhu S, Yang H, Jiang A. J. Org. Chem. 2020; 85: 15667
- 20c Guo A, Han JB, Tang XY. Org. Lett. 2018; 20: 2351
- 20d Liu Q, Hong J, Sun BT. Org. Lett. 2019; 21: 6597
- 20e Li Z, Wang Z, Zhu L. J. Am. Chem. Soc. 2014; 136: 16439
- 20f Zhang L, Zuo Z, Leng X. Angew. Chem. Int. Ed. 2014; 53: 2696
- 20g Pereira S, Srebnik M. J. Am. Chem. Soc. 1996; 118: 909
- 20h Wang G, Cao J, Gao L. J. Am. Chem. Soc. 2017; 139: 3904
- 20i Liu C, Yang YJ, Dong JY. J. Org. Chem. 2019; 84: 9937
- 20j Wang S, Lokesh N, Hioe J. Chem. Sci. 2019; 10: 4580
- 20k Yan G, Huang D, Wu X. Adv. Synth. Catal. 2018; 360: 1040
- 20l Zhou S, Yuan F, Guo M. Org. Lett. 2018; 20: 6710
- 20m Xuan Q, Song Q. Org. Lett. 2016; 18: 4250
- 20n Kuang Z, Yang K, Zhou Y. Chem. Commun. 2020; 56: 6469
Transition-metal-catalyzed fluoroalkylation of arenes methodologies:
Visible-light-catalyzed fluoroalkylation of arenes methodologies:
Radical initiator catalyzed fluoroalkylation of arenes methodologies: