Synthesis 2022; 54(11): 2696-2706
DOI: 10.1055/a-1737-2765
paper

Radical Addition of 4-Hydroxyquinazolines and Alkylation of Quinones by the Electro-Induced Homolysis of 4-Alkyl-1,4-di­hydropyridines

Xiaosheng Luo
a   Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. of China
,
Qiping Feng
b   Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, P. R. of China
,
Ping Wang
a   Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. of China
› Institutsangaben
Financial support was received from National Natural Science Foundation of China (21907064, 22077080, and 22107068).


Abstract

The formation of C(sp3)-centered radicals via the electro-­induced homolysis of 4-alkyl-1,4-dihydropyridines (alkyl-DHPs) is reported. The resulting alkyl radicals reacted with 4-hydroxyquinazolines or quinones to afford 2-alkyldihydroquinazolinones or alkylated quinones. A broad range of alkyl DHPs could be used as versatile radical precursors under electrolysis conditions. This alterative strategy provided a simple and effective pathway for the construction of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds under mild conditions.

Supporting Information



Publikationsverlauf

Eingereicht: 06. Dezember 2021

Angenommen nach Revision: 11. Januar 2022

Accepted Manuscript online:
11. Januar 2022

Artikel online veröffentlicht:
04. März 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ma W, Long Y.-T. Chem. Soc. Rev. 2014; 43: 30
  • 2 Chinigo GM, Paige M, Grindrod S, Hamel E, Dakshanamurthy S, Chruszcz M, Minor W, Brown ML. J. Med. Chem. 2008; 51: 4620
    • 3a Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 3b Dai Y, Tian B, Chen H, Zhang Q. ACS Catal. 2019; 9: 2909
    • 3c Dai Y, Zheng J, Zhang Q. Org. Lett. 2018; 20: 3923
  • 4 Li G, Chen R, Wu L, Fu Q, Zhang X, Tang Z. Angew. Chem. Int. Ed. 2013; 52: 8432
    • 5a Li G, Wu L, Lv G, Liu H, Fu Q, Zhang X, Tang Z. Chem. Commun. 2014; 50: 6246
    • 5b Nakajima K, Zhang Y, Nishibayashi Y. Org. Lett. 2019; 21: 4642
    • 6a Gutiérrez-Bonet Á, Remeur C, Matsui JK, Molander GA. J. Am. Chem. Soc. 2017; 139: 12251
    • 6b Liu L, Jiang P, Liu Y, Du H, Tan J. Org. Chem. Front. 2020; 7: 2278
    • 6c Bai Z, Zhang H, Wang H, Yu H, Chen G, He G. J. Am. Chem. Soc. 2021; 143: 1195
  • 7 Kim I, Park S, Hong S. Org. Lett. 2020; 22: 8730
  • 8 He X.-K, Lu J, Zhang A.-J, Zhang Q.-Q, Xu G.-Y, Xuan J. Org. Lett. 2020; 22: 5984
    • 9a Nakajima K, Nojima S, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 14106
    • 9b Chen W, Liu Z, Tian J, Li J, Ma J, Cheng X, Li G. J. Am. Chem. Soc. 2016; 138: 12312
    • 9c Zhang H.-H, Zhao J.-J, Yu S. J. Am. Chem. Soc. 2018; 140: 16914
    • 9d Liang S, Angnes RA, Potnis CS, Hammond GB. Tetrahedron Lett. 2019; 60: 151230
    • 9e Huang H.-M, Bellotti P, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2021; 60: 2464
    • 9f Wang S, Zhou Q, Zhang X, Wang P. Angew. Chem. Int. Ed. 2022; in press; DOI: DOI: 10.1002/anie.202111388.
    • 10a Liang S, Kumon T, Angnes RA, Sanchez M, Xu B, Hammond GB. Org. Lett. 2019; 21: 3848
    • 10b Wang Q, Duan J, Tang P, Chen G, He G. Sci. China Chem. 2020; 63: 1613
    • 10c Lu Z, Yang Y.-Q, Li H.-X. Synthesis 2016; 48: 4221
  • 11 van Leeuwen T, Buzzetti L, Perego LA, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 4953
    • 12a Dumoulin A, Matsui JK, Gutiérrez-Bonet Á, Molander GA. Angew. Chem. Int. Ed. 2018; 57: 6614
    • 12b Song Z.-Y, Zhang C.-L, Ye S. Org. Biomol. Chem. 2019; 17: 181
    • 12c Schwarz JL, Huang H.-M, Paulisch TO, Glorius F. ACS Catal. 2020; 10: 1621
  • 13 Wang X, Li H, Qiu G, Wu J. Chem. Commun. 2019; 55: 2062
  • 14 Gong X, Yang M, Liu J.-B, He F.-S, Fan X, Wu J. Green Chem. 2020; 22: 1906
  • 15 Zhang K, Lu L.-Q, Jia Y, Wang Y, Lu F.-D, Pan F, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 13375
  • 16 Huang W, Cheng X. Synlett 2017; 28: 148
    • 17a Buzzetti L, Prieto A, Roy SR, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 15039
    • 17b Verrier C, Alandini N, Pezzetta C, Moliterno M, Buzzetti L, Hepburn HB, Vega-Peñaloza A, Silvi M, Melchiorre P. ACS Catal. 2018; 8: 1062
  • 18 Ren S.-C, Lv W.-X, Yang X, Yan J.-L, Xu J, Wang F.-X, Hao L, Chai H, Jin Z, Chi YR. ACS Catal. 2021; 11: 2925
  • 19 Chen X, Ye F, Luo X, Liu X, Zhao J, Wang S, Zhou Q, Chen G, Wang P. J. Am. Chem. Soc. 2019; 141: 18230
    • 20a Lipp A, Badir S, Dykstra R, Gutierrez O, Molander G. Adv. Synth. Catal. 2021; 363: 3507
    • 20b Wang L, Wang X, Wang W, Liu W, Liu Y, Xie H, Reiser O, Zeng J, Cheng P. J. Nat. Prod. 2021; 84: 2390
    • 21a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 21b Meyer TH, Finger LH, Gandeepan P, Ackermann L. Trends Chem. 2019; 1: 63
    • 22a Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
    • 22b Shi S.-H, Liang Y, Jiao N. Chem. Rev. 2021; 121: 485
  • 23 Sperry JB, Wright DL. Chem. Soc. Rev. 2006; 35: 605
  • 24 Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
    • 25a Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, deGruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc. 2019; 141: 6392
    • 25b Gnaim S, Takahira Y, Wilke HR, Yao Z, Li J, Delbrayelle D, Echeverria P.-G, Vantourout JC, Baran PS. Nat. Chem. 2021; 13: 367
    • 26a Wang P, Gao X, Huang P, Lei A. ChemCatChem 2020; 12: 27
    • 26b Wang H, He M, Li Y, Zhang H, Yang D, Nagasaka M, Lv Z, Guan Z, Cao Y, Gong F, Zhou Z, Zhu J, Samanta S, Chowdhury AD, Lei A. J. Am. Chem. Soc. 2021; 143: 3628
    • 27a Xiong P, Xu H.-H, Song J, Xu H.-C. J. Am. Chem. Soc. 2018; 140: 2460
    • 27b Xiong P, Zhao H.-B, Fan X.-T, Jie L.-H, Long H, Xu P, Liu Z.-J, Wu Z.-J, Cheng J, Xu H.-C. Nat. Commun. 2020; 11: 2706
    • 28a Tian C, Dhawa U, Scheremetjew A, Ackermann L. ACS Catal. 2019; 9: 7690
    • 28b Kong W.-J, Shen Z, Finger LH, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 5551
    • 29a Yang Q.-L, Wang X.-Y, Lu J.-Y, Zhang L.-P, Fang P, Mei T.-S. J. Am. Chem. Soc. 2018; 140: 11487
    • 29b Liu D, Liu Z.-R, Ma C, Jiao K.-J, Sun B, Wei L, Lefranc J, Herbert S, Mei T.-S. Angew. Chem. Int. Ed. 2021; 60: 9444
    • 30a Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
    • 30b Song L, Fu N, Ernst BG, Lee WH, Frederick MO, DiStasio RA, Lin S. Nat. Chem. 2020; 12: 747
    • 31a Liang Y, Lin F, Adeli Y, Jin R, Jiao N. Angew. Chem. Int. Ed. 2019; 58: 4566
    • 31b Adeli Y, Huang K, Liang Y, Jiang Y, Liu J, Song S, Zeng C.-C, Jiao N. ACS Catal. 2019; 9: 2063
    • 32a Röckl JL, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2020; 59: 315
    • 32b Blum SP, Karakaya T, Schollmeyer D, Klapars A, Waldvogel SR. Angew. Chem. Int. Ed. 2021; 60: 5056
    • 33a Hayrapetyan D, Shkepu V, Seilkhanov OT, Zhanabil Z, Lam K. Chem. Commun. 2017; 53: 8451
    • 33b Petti A, Leech MC, Garcia AD, Goodall IC. A, Dobbs AP, Lam K. Angew. Chem. Int. Ed. 2019; 58: 16115
    • 34a Chen X, Luo X, Peng X, Guo J, Zai J, Wang P. Chem. Eur. J. 2020; 26: 3226
    • 34b Huang H, Strater ZM, Lambert TH. J. Am. Chem. Soc. 2020; 142: 1698
    • 34c Shen T, Lambert TH. Science 2021; 371: 620
    • 34d Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
    • 34e Ma C, Fang P, Mei T.-S. ACS Catal. 2018; 8: 7179
    • 34f Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
  • 35 Luo X, Wang P. Org. Lett. 2021; 23: 4960
  • 36 Chen X, Luo X, Wang K, Liang F, Wang P. Synlett 2020; 32: 733
  • 37 Kumar UC, Bvs SK, Mahmood S, Sriram D, Kumar-Sahu P, Pulakanam S, Ballell L, Alvarez-Gomez D, Malik S, Jarp S. Future Med. Chem. 2013; 5: 249
    • 38a Gutiérrez-Bonet Á, Tellis JC, Matsui JK, Vara BA, Molander GA. ACS Catal. 2016; 6: 8004
    • 38b Gutiérrez-Bonet Á, Remeur C, Matsui JK, Molander GA. J. Am. Chem. Soc. 2017; 139: 12251
    • 38c Sutherland DR, Veguillas M, Oates CL, Lee A.-L. Org. Lett. 2018; 20: 6863
    • 38d Majumdar B, Mandani S, Bhattacharya T, Sarma D, Sarma TK. J. Org. Chem. 2017; 82: 2097
    • 38e Cheng X, Vellalath S, Goddard R, List B. J. Am. Chem. Soc. 2008; 130: 15786
  • 39 Liu Q, Sui Y, Zhang Y, Zhang K, Chen Y, Zhou H. Synlett 2020; 31: 275