RSS-Feed abonnieren
DOI: 10.1055/a-1736-4388
UV-Light-Induced Dehydrogenative N-Acylation of Amines with 2-Nitrobenzaldehydes To Give 2-Aminobenzamides
National Natural Science Foundation of China (21676076, 21878071, 21971060), Recruitment Program for Foreign Experts of China (WQ20164300353), Huxiang High-Talent Project of Hunan Province (2018RS3042).
Abstract
A simple, mild, green, and efficient method for the synthesis of 2-aminobenzamides is highly desirable. Herein, we report the development of an efficient, one-pot strategy starting from 2-aminobenzaldehydes and amines with acetic acid in ethyl acetate/acetone using irradiation with UV light for the synthesis of 2-aminobenzamides in high yields; 32 examples proceeded successfully by this photo-induced protocol in up to 92% yield. The reaction was also readily achieved on a gram scale. The utility of the 2-aminobenzamide building block in organic synthesis was shown by their use in the preparation of quinazolinone derivatives. The method was applied to amino acid derivatives as the amine component, which smoothly gave N-(2-aminobenzoyl)acetate derivatives at room temperature. Finally, a plausible mechanism is proposed.
Key words
UV-light-induced - amidation - nitro reduction - 2-aminobenzamide - 2-aminobenzaldehyde - quinazolinoneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1736-4388. Included are X-ray data of 4a (CCDC 2125130) and copies of the NMR spectra of 4a–p, 5a–k, 6a–e, 8 and 9.
- Supporting Information
Publikationsverlauf
Eingereicht: 06. Dezember 2021
Angenommen nach Revision: 11. Januar 2022
Accepted Manuscript online:
11. Januar 2022
Artikel online veröffentlicht:
01. März 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
-
1
Parua S,
Das S,
Sikari R,
Sinha S,
Paul ND.
J. Org. Chem. 2017; 82: 7165
-
2
Li F,
Lu L,
Liu P.
Org. Lett. 2016; 18: 2580
-
3
Balaji S,
Balamurugan G,
Ramesh R,
Semeril D.
Organometallics 2021; 40: 725
-
4
Zhou J,
Fang J.
J. Org. Chem. 2011; 76: 7730
- 5 Li Q, Huang Y, Chen T, Zhou Y, Xu Q, Yin SF, Han LB. Org. Lett. 2014; 16: 3672
- 6 Bhargava RM, Prasanth K, Anandhan R. Org. Biomol. Chem. 2020; 18: 9601
- 7 Zhao D, Wang T, Li JX. Chem. Commun. 2014; 50: 6471
-
8
Hikawa H,
Ino Y,
Suzuki H,
Yokoyama Y.
J. Org. Chem. 2012; 77: 7046
- 9 Li F, Lu L, Ma J. Org. Chem. Front. 2015; 2: 1589
- 10 Laha JK, Tummalapalli KS, Jethava KP. Org. Biomol. Chem. 2016; 14: 2473
- 11 Mulakayala N, Kandagatla B, Ismail, Rapolu RK, Rao P, Mulakayala C, Kumar CS, Iqbal J, Oruganti S. Bioorg. Med. Chem. Lett. 2012; 22: 5063
- 12 Yan Y, Niu B, Xu K, Yu J, Zhi H, Liu Y. Adv. Synth. Catal. 2016; 358: 212
- 13 Khaligh NG, Johan MR, Ching JJ. Aust. J. Chem. 2018; 71: 186
- 14 Barak DS, Mukhopadhyay S, Dahatonde DJ, Batra S. Tetrahedron Lett. 2019; 60: 248
- 15 Bonne D, Dekhane M, Zhu J. Org. Lett. 2005; 7: 5285
- 16 Snider BB, Zeng H. Heterocycles 2003; 61: 173
- 17 He F, Snider BB. J. Org. Chem. 1999; 64: 1397
- 18 Mazurkiewicz R. Monatsh. Chem. 1989; 120: 973
- 19 Zhang X, Dong S, Niu X, Li Z, Fan X, Zhang G. Org. Lett. 2016; 18: 4634
- 20 Mondal D, Pal G, Chowdhury C. Chem. Commun. 2021; 57: 5462
- 21a Ambreen N, Wirth T. Eur. J. Org. Chem. 2014; 7590
- 21b Ali MA, Punniyamurthy T. Adv. Synth. Catal. 2010; 352: 288
- 21c Gowda RR, Chakraborty D. Eur. J. Org. Chem. 2011; 2226
- 21d Ganguly NC, Roy S, Mondal P. Tetrahedron Lett. 2012; 53: 1413
- 21e Shie JJ, Fang JM. J. Org. Chem. 2003; 68: 1158
- 22a Huang J, Chen W, Liang J, Yang Q, Fan Y, Chen MW, Peng Y. J. Org. Chem. 2021; 86: 14866
- 22b Ju H, Sun J, Li X, Chen H. Chin. J. Org. Chem. 2019; 39: 2018
- 22c Wang S, Huang W, Zhang X, Zhang X, Pan C. Chin. J. Org. Chem. 2020; 40: 959
- 23 Ciamician G, Silber P. Ber. Dtsch. Chem. Ges. 1901; 34: 2040
- 24 Charville H, Jackson DA, Hodges G, Whiting A, Wilson MR. Eur. J. Org. Chem. 2011; 5981
- 25 Purkait A, Jana CK. J. Synthesis 2019; 51: 2687
- 26 Zuman P, Shah B. Chem. Rev. 1994; 94: 1621
- 27 Zhang K, Lu G, Chu F, Huang X. Catal. Sci. Technol. 2021; 11: 7060
- 28a McAllister LA, Bechle BM, Dounay AB, Evrard E, Gan X, Ghosh S, Kim JY, Parikh VD, Tuttle JB, Verhoest PR. J. Org. Chem. 2011; 76: 3484
- 28b Qu Z, Chen X, Zhong S, Deng GJ, Huang H. Org. Lett. 2021; 23: 5349
- 28c Hou T, Wang Y, Zhang J, Li M, Lu J, Heggen M, Sievers C, Wang F. J. Catal. 2017; 353: 107
- 28d Lou XB, He L, Qian Y, Liu YM, Cao Y, Fan KN. Adv. Synth. Catal. 2011; 353: 281
- 28e Bigelow HE. Chem. Rev. 1931; 9: 117
- 29a Dou G, Shi D. J. Comb. Chem. 2009; 11: 1073
- 29b Penchev PN, Petrov JS. Org. Prep. Proced. Int. 2005; 37: 560
- 29c Butin AV, Nevolina TA, Shcherbinin VA, Trushkov IV, Cheshkov DA, Krapivin GD. Org. Biomol. Chem. 2010; 8: 3316
- 29d Li X, Lee YR. Bull. Korean Chem. Soc. 2011; 32: 2121
- 29e Kumar KN, Sreeramamurthy K, Palle S, Mukkanti K, Das P. Tetrahedron Lett. 2010; 51: 899
- 29f Ranganathan D, Farooqui F. Tetrahedron Lett. 1984; 25: 5701
- 29g Carpintero M, Cifuentes M, Ferritto R, Haro R, Toleo MA. J. Comb. Chem. 2007; 9: 818
- 29h Ozaki K, Yamada Y, Onie T, Ishizuka T, Iwasawa Y. J. Med. Chem. 1985; 28: 568