Synlett 2022; 33(06): 569-574
DOI: 10.1055/a-1735-6250
letter

Iodine-Promoted Formal [5+1] Annulation of 2-Vinylanilines and Thiurams: A Facile Approach to the Synthesis of 2-Aminoquinolines

Jing Jiao
,
Pengyang Wang
,
Fangtao Xiao
,
Zhipeng Zhang
This work was supported by the National Natural Science Foundation of China (21702059), Shanghai Pujiang Program (18PJ1402200), and Fundamental Research Funds for the Central Universities (222201814014, JKVJ1211010, JKVJ12001010).


Abstract

Quinolines, especially 2-aminoquinolines, are highly important heterocycles in medicinal chemistry. 2-Aminoquinolines can be synthesized by stepwise construction of the quinoline ring followed by additional amination; however, this protocol is cumbersome. Here, we describe a [5+1]-cyclization of 2-vinylanilines with tetraalkylthiuram disulfides in the presence of iodine and copper(II) triflate. This reaction directly employs readily available and low-cost thiuram as both a C1 synthon and a nitrogen source, providing a facile approach to one-step syntheses of a variety of 2-aminoquinolines in good to excellent yields.

Supporting Information



Publication History

Received: 15 December 2021

Accepted after revision: 11 January 2022

Accepted Manuscript online:
11 January 2022

Article published online:
07 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Mao Y, Soni K, Sangani C, Yao Y. Curr. Top. Med. Chem. 2020; 20: 2599
  • 2 Yuan P, Gu X, Ni X, Qi Y, Shao X, Xu X, Liu J, Qian X. Bioorg. Med. Chem. Lett. 2021; 51: 128371
  • 3 Cinelli MA, Reidl CT, Li H, Chreifi G, Poulos TL, Silverman RB. J. Med. Chem. 2020; 63: 4528
  • 4 Yang W, Li Y, Ai Y, Obianom ON, Guo D, Yang H, Sakamuru S, Xia M, Shu Y, Xue F. J. Med. Chem. 2019; 62: 11151
  • 5 Cheng Y, Judd TC, Bartberger MD, Brown J, Chen K, Fremeau RT. Jr, Hickman D, Hitchcock SA, Jordan B, Li V, Lopez P, Louie SW, Luo Y, Michelsen K, Nixey T, Powers TS, Rattan C, Sickmier EA, St Jean DJ. Jr, Wahl RC, Wen PH, Wood S. J. Med. Chem. 2011; 54: 5836
    • 6a Tondys H, van der Plas HC, Woźniak M. J. Heterocycl. Chem. 1985; 22: 353
    • 6b Bergstrom FW, Fernelius WC. Chem. Rev. 1937; 20: 413
    • 7a Kumar SV, Ma D. J. Org. Chem. 2018; 83: 2706
    • 7b Bhunia S, Kumar SV, Ma D. J. Org. Chem. 2017; 82: 12603
    • 7c Gao J, Bhunia S, Wang K, Gan L, Xia S, Ma D. Org. Lett. 2017; 19: 2809
    • 7d Pawar GG, Wu H, De S, Ma D. Adv. Synth. Catal. 2017; 359: 1631
    • 7e Bhunia S, Pawar GG, Kumar Y, Jiang SV, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
    • 7f Hostyn S, Van Baelen G, Lemière GL. F, Maes BU. W. Adv. Synth. Catal. 2008; 350: 2653
    • 7g Smith JA, Jones RK, Booker GW, Pyke SM. J. Org. Chem. 2008; 73: 8880
    • 7h Manolikakes G, Gavryushin A, Knochel P. J. Org. Chem. 2008; 73: 1429
    • 7i Shen Q, Hartwig JF. Org. Lett. 2008; 10: 4109
    • 7j Baffoe J, Hoe MY, Touré BB. Org. Lett. 2010; 12: 1532
    • 7k Fors BP, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 15914
    • 7l Breitler S, Oldenhuis NJ, Fors BP, Buchwald SL. Org. Lett. 2011; 13: 3262
    • 7m Upadhyay S, Chandra A, Singh S, Singh RM. J. Heterocycl. Chem. 2011; 48: 1202
    • 7n Petersen TP, Larsen AF, Ritzén A, Ulven T. J. Org. Chem. 2013; 78: 4190
    • 7o Yang C, Zhang F, Deng G.-J, Gong H. J. Org. Chem. 2019; 84: 181
    • 7p McGuire RT, Paffile JF. J, Zhou Y, Stradiotto M. ACS Catal. 2019; 9: 9292
    • 7q Chen Z, Ma D. Org. Lett. 2019; 21: 6874
    • 7r McGuire RT, Simon CM, Yadav AA, Ferguson MJ, Stradiotto M. Angew. Chem. Int. Ed. 2020; 59: 8952
    • 8a Wang D, Jia H, Wang W, Wang Z. Tetrahedron Lett. 2014; 55: 7130
    • 8b Wang D, Wang Y, Zhao J, Li L, Miao L, Wang D, Sun H, Yu P. Tetrahedron 2016; 72: 5762
    • 8c Rodríguez JG, de Los Rios C, Lafuente A. Tetrahedron 2005; 61: 9042
    • 9a Li G, Jia C, Sun K. Org. Lett. 2013; 15: 5198
    • 9b Zhu C, Yi M, Wei D, Chen X, Wu Y, Cui X. Org. Lett. 2014; 16: 1840
    • 10a Chen X, Li X, Qu Z, Ke D, Qu L, Duan L, Mai W, Yuan J, Chen J, Zhao Y. Adv. Synth. Catal. 2014; 356: 1979
    • 10b Bi W, Sun K, Qu C, Chen X.-L, Qu L.-B, Zhu S.-H, Li X, Wu H.-T, Duan L.-K, Zhao Y.-F. Org. Chem. Front. 2017; 4: 1595
    • 10c Yu X, Yang S, Zhang Y, Guo M, Yamamoto Y, Bao M. Org. Lett. 2017; 19: 6088
    • 10d Behera A, Sau P, Sahoo AK, Patel BK. J. Org. Chem. 2018; 83: 11218
    • 10e Wang Z, Han M.-Y, Li P, Wang L. Eur. J. Org. Chem. 2018; 2018: 5954
    • 10f Zhang Y, Zhang S, Xu G, Li M, Tang C, Fan W. Org. Biomol. Chem. 2019; 17: 309
    • 10g Nanaji Y, Kirar S, Pawar SV, Yadav AK. RSC Adv. 2020; 10: 7628
    • 11a Huang Y, Li Y, Li J, Deng J. J. Org. Chem. 2016; 81: 4645
    • 11b Ni J, Jiang Y, An Z, Yan R. Org. Lett. 2018; 20: 1534
    • 11c Chen P, Nan J, Hu Y, Ma Q, Ma Y. Org. Lett. 2019; 21: 4812
    • 11d Nan J, Hu Y, Chen P, Ma Y. Org. Lett. 2019; 21: 1984
    • 11e Nan J, Chen P, Zhang Y, Yin Y, Wang B, Ma Y. J. Org. Chem. 2020; 85: 14042
    • 11f Xiang Y, Luo P, Hao T, Xiong W, Song X, Ding Q. Tetrahedron 2021; 79: 131832
    • 12a Wang L, Ferguson J, Zeng F. Org. Biomol. Chem. 2015; 13: 11486
    • 12b Xu P, Zhu T.-H, Wei T.-Q, Wang S.-H, Ji S.-J. RSC Adv. 2016; 6: 32467
    • 12c Zhang X, Wang T.-L, Huo C.-D, Wang X.-C, Quan Z.-J. Chem. Commun. 2018; 54: 3114
  • 13 Sheppard JG, Frazier KR, Saralkar P, Hossain MF, Geldenhuys WJ, Long TE. Bioorg. Med. Chem. Lett. 2018; 28: 1298
    • 14a Jiao J, Wei L, Ji X.-M, Hu M.-L, Tang R.-Y. Adv. Synth. Catal. 2016; 358: 268
    • 14b Dong Z.-B, Liu X, Bolm C. Org. Lett. 2017; 19: 5916
    • 14c Zeng M.-T, Xu W, Liu X, Chang C.-Z, Zhu H, Dong Z.-B. Eur. J. Org. Chem. 2017; 2017: 6060
    • 14d Xu W, Gao F, Dong Z.-B. Eur. J. Org. Chem. 2018; 2018: 821
    • 14e Peng H.-Y, Dong Z.-B. Eur. J. Org. Chem. 2019; 2019: 949
    • 14f Cheng C, Zhao M, Lai M, Zhai K, Shi B, Wang S, Luo R, Zhang L, Wu Z. Eur. J. Org. Chem. 2019; 2019: 2941
    • 14g Peng K, Zhu H, Liu X, Peng H.-Y, Chen J.-Q, Dong Z.-B. Eur. J. Org. Chem. 2019; 2019: 7629
    • 14h Huang Z.-B, Xia X.-J, Huang Z.-H, Xu L, Zhang X.-Y, Tang R.-Y. Org. Biomol. Chem. 2020; 18: 1369
    • 15a Liu X, Zhang S.-B, Zhu H, Dong Z.-B. J. Org. Chem. 2018; 83: 11703
    • 15b Lai M, Wu Z, Wang Y, Zheng Y, Zhao M. Org. Chem. Front. 2019; 6: 506
    • 16a Liu M, Zeng M.-T, Xu W, Wu L, Dong Z.-B. Tetrahedron Lett. 2017; 58: 4352
    • 16b Lai M, Wu Z, Li S.-J, Wei D, Zhao M. J. Org. Chem. 2019; 84: 11135
  • 17 Brahemi G, Kona FR, Fiasella A, Buac D, Soukupová J, Brancale A, Burger AM, Westwell AD. J. Med. Chem. 2010; 53: 2757
    • 18a Zhang S.-B, Liu X, Gao M.-Y, Dong Z.-B. J. Org. Chem. 2018; 83: 14933
    • 18b Chen J.-Q, Guo J, Dong Z.-B. Synthesis 2020; 52: 1927
    • 18c Aricu AN, Kuchkova KI, Secara-Cushnir ES, Barba AN, Ungur ND, Vornicu N. Chem. Nat. Compd. 2020; 56: 656
    • 19a Zeng M.-T, Xu W, Liu M, Liu X, Chang C.-Z, Zhu H, Dong Z.-B. Synth. Commun. 2017; 47: 1434
    • 19b Banert K, Heck M, Ihle A, Kronawitt J, Pester T, Shoker T. J. Org. Chem. 2018; 83: 5138
    • 19c Lai M, Wu Z, Wang Y, Zheng Y, Zhao M. Org. Chem. Front. 2019; 6: 506
    • 19d Hu J, Ye X, Hao S, Zhao Q, Zhao M, Wei Y, Wu Z, Wang N, Ji X. Asian J. Org. Chem. 2020; 9: 2191
    • 19e Lai M, Wu Z, Su F, Yu Y, Jing Y, Kong J, Wang Z, Wang S, Zhao M. Eur. J. Org. Chem. 2020; 2020: 198
    • 19f Wang L, Ding S, Shen H, Wang Y, Hao S, Yin G, Qiu J, Lin B, Wu Z, Zhao M. Asian J. Org. Chem. 2021; 10: 2544
  • 20 N,N-Dimethyl-4-phenylquinolin-2-amine; Typical Procedure A 15 mL tube with a Teflon cap, equipped with a magnetic stirrer bar, was charged with substrate 1a  (39.1 mg, 0.20 mmol), dithiocarbamate 2a (48.1 mg, 0.20 mmol), I2 (50.8mg, 1 equiv), and Cu(OTf)2 (14.5 mg, 20 mol%) under air. PhCl (2 mL) was then added, the tube was capped, and the resulting mixture was stirred at 120 °C for 12 h. When the reaction was complete, the mixture was cooled to r.t. and diluted with EtOAc. The resulting mixture was washed with sat. aq Na2S2O3 (3 × 10 mL), and the organic layers were combined, dried (Na2SO4), filtered, and concentrated. The crude product was purified by column chromatography [silica gel, PE–EtOAc (5:1)] to give a yellow solid; yield: 35.3 mg (71%); mp 96–97 °C. 1H NMR (400 MHz, CHCl3): δ = 7.78 (dd, J = 8.4, 0.8 Hz, 1 H), 7.60 (dd, J = 8.4, 1.2 Hz, 1 H), 7.55–7.43 (m, 6 H), 7.12 (ddd, J = 8.0, 6.8, 1.2 Hz, 1 H), 6.82 (s, 1 H), 3.25 (s, 6 H). 13C NMR (101 MHz, CDCl3): δ = 157.40, 149.62, 148.86, 139.30, 129.55, 129.49, 128.52, 128.19, 126.84, 125.74, 121.76, 121.57, 109.39, 38.21. HRMS (ESI-TOF): m/z [M + H]+ calcd for C17H17N2 +: 249.1386; found: 249.1382.
  • 21 CCDC 2118283 contains the supplementary crystallographic data for compound 3o. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 22a Yuan J, Yu J.-T, Jiang Y, Cheng J. Org. Biomol. Chem. 2017; 15: 1334
    • 22b Gogoi A, Guin S, Rajamanickam S, Rout SK, Patel BK. J. Org. Chem. 2015; 80: 9016
    • 22c Ganesh M, Sahoo SK, Khatun N, Patel BK. Eur. J. Org. Chem. 2015; 2015: 7534
    • 22d Guin S, Rout SK, Gogoi A, Nandi S, Ghara KK, Patel BK. Adv. Synth. Catal. 2012; 354: 2757