Synthesis 2022; 54(11): 2707-2723
DOI: 10.1055/a-1734-9782
paper

Synthesis of Isoquinoline-1,3(2H,4H)-diones by Visible-Light-Mediated Cyclization of Acryloylbenzamides with Alkylboronic Acids, Arylsulfonyl Hydrazides and Oxime Esters

Jiahui Fu
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Xingxing Cai
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Yihuo Liu
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Jinghua Li
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Dongping Cheng
b   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Xiaoliang Xu
a   College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
› Institutsangaben
This work was supported by the National Natural Science Foundation of China (No. 22078300) and the Natural Science Foundation of Zhejiang Province (LY18B020018).


Abstract

An efficient visible-light-mediated tandem reaction of acryl­oylbenzamides with alkylboronic acids, arylsulfonyl hydrazides and oxime esters has been developed. The reaction proceeds via radical addition and cyclization to give various isoquinoline-1,3(2H,4H)-diones in satisfactory yields under mild conditions, which provides a good opportunity to discover new meaningful bioactive compounds.

Supporting Information



Publikationsverlauf

Eingereicht: 10. Dezember 2021

Angenommen nach Revision: 10. Januar 2022

Accepted Manuscript online:
10. Januar 2022

Artikel online veröffentlicht:
14. März 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 1b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1c Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
    • 1d Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506
  • 2 Correia JM, Santos MS, Pissinati EF, da Silva GP, Paixão MW. Chem. Rec. 2021; 21: 1
    • 3a Vernekar SK. V, Liu Z, Nagy E, Miller L, Kirby KA, Wilson DJ, Kankanala J, Sarafianos SG, Parniak MA, Wang Z. J. Med. Chem. 2015; 58: 651
    • 3b Billamboz M, Bailly F, Lion C, Touati N, Vezin H, Calmels C, Andréola M, Christ F, Debyser Z, Cotelle P. J. Med. Chem. 2011; 54: 1812
    • 3c Chen Y.-L, Tang J, Kesler MJ, Sham YY, Vince R, Geraghty RJ, Wang Z. Bioorg. Med. Chem. 2012; 20: 467
    • 3d Billamboz M, Suchaud V, Bailly F, Lion C, Demeulemeester J, Calmels C, Andréola M, Christ F, Debyser Z, Cotelle P. ACS Med. Chem. Lett. 2013; 4: 606
  • 4 Langlois M, Soulier JL, Rampillon V, Gallais C, Brémont B, Shen S, Yang D, Giudice A, Sureau F. Eur. J. Med. Chem. 1994; 29: 925
    • 5a Tsou H.-R, Otteng M, Tran T, Floyd MB, Reich M, Birnberg G, Kutterer K, Ayral-Kaloustian S, Ravi M, Nilakantan R, Grillo M, McGinnis JP, Rabindran SK. J. Med. Chem. 2008; 51: 3507
    • 5b Tsou H.-R, Liu X, Birnberg G, Kaplan J, Otteng M, Tran T, Kutterer K, Tang Z, Suayan R, Zask A, Ravi M, Bretz A, Grillo M, McGinnis JP, Rabindran SK, Ayral-Kaloustian S, Mansour TS. J. Med. Chem. 2009; 52: 2289
  • 6 Dhar S, Rana DK, Bhattacharya SC. Colloids Surf., A 2012; 402: 117
  • 7 Gardner G, Semple JE. J. Plant Growth Regul. 1990; 9: 161
    • 8a Malamas MS, Hohman TC, Millen J. J. Med. Chem. 1994; 37: 2043
    • 8b Young SD, Wiggins JM, Huff JR. J. Org. Chem. 1988; 53: 1114
  • 9 Frutos-Pedreño R, García-López J. Adv. Synth. Catal. 2016; 358: 2692
  • 10 Chahdoura F, Mallet-Ladeira S, Gómez M. Org. Chem. Front. 2015; 2: 312
  • 11 Okuda K, Yoshida M, Hirota T, Sasaki K. Chem. Pharm. Bull. 2010; 58: 363
  • 12 Huh DH, Jeong JS, Lee HB, Ryu H, Kim YG. Tetrahedron 2002; 58: 9925
  • 13 Kennedy SH, Schaeff MN, Klumpp DA. J. Org. Chem. 2019; 84: 14133
  • 14 Mayer SC, Banker AL, Boschelli F, Di L, Johnson M, Kenny CH, Krishnamurthy G, Kutterer K, Moy F, Petusky S, Ravi M, Tkach D, Tsou H.-R, Xu W. Bioorg. Med. Chem. Lett. 2008; 18: 3641
    • 15a Chen X, Xia F, Zhao Y, Ma J, Ma Y, Zhang D, Yang L, Sun P. Chin. J. Chem. 2020; 38: 1239
    • 15b Wang G.-Z, Fu M.-C, Zhao B, Shang R. Sci. China: Chem. 2021; 64: 439
  • 16 Qian P, Du B, Jiao W, Mei H, Han J, Pan Y. Beilstein J. Org. Chem. 2016; 12: 301
    • 17a Pan C, Chen C, Yu JT. Org. Biomol. Chem. 2017; 15: 1096
    • 17b Zhao W, Xie P, Zhang M, Niu B, Bian Z, Pittman CJr, Zhou A. Org. Biomol. Chem. 2014; 12: 7690
  • 18 Tang Q, Xie P, Wang J, Lin J, Feng C, Pittman CU, Zhou A. Tetrahedron 2017; 73: 5436
  • 19 Su Y, Zhang R, Xue W, Liu X, Zhao Y, Wang K, Huang D, Huo C, Hu Y. Org. Biomol. Chem. 2020; 18: 1940
  • 20 Tang S, Deng Y, Li J, Wang W, Ding G, Wang M, Xiao Z, Wang Y, Sheng R. J. Org. Chem. 2015; 80: 12599
  • 21 Chen Y.-J, He Y.-H, Guan Z. Tetrahedron 2019; 75: 3053

    • The reaction of acryloylbenzamides and RSO2Cl:
    • 22a Liu X, Cong T, Liu P, Sun P. Org. Biomol. Chem. 2016; 14: 9416
    • 22b Zhang T, Shi Y, Zhang S, Jia C, He C, Duan C. New J. Chem. 2018; 42: 18448
    • 22c Xia X.-F, Zhu S.-L, Wang D, Liang Y.-M. Adv. Synth. Catal. 2017; 359: 859

    • The reaction of acryloylbenzamides and RSO2Na:
    • 22d Zuo K.-L, He Y.-H, Guan Z. Eur. J. Org. Chem. 2019; 939
    • 23a Ye H, Zhao H, Ren S, Ye H, Cheng D, Li X, Xu X. Tetrahedron Lett. 2019; 60: 1302
    • 23b Ren S, Fu J, Cheng D, Li X, Xu X. Tetrahedron Lett. 2021; 66: 152829
    • 23c Zhao H, Ni N, Li X, Cheng D, Xu X. Tetrahedron Lett. 2021; 65: 152746
    • 23d Zhao H, Ni N, Li X, Cheng D, Xu X. Polyhedron 2021; 206: 115337
    • 24a Ranjan P, Pillitteri S, Coppola G, Oliva M, Van der Eycken EV, Sharma UK. ACS Catal. 2021; 11: 10862
    • 24b Lima F, Sharma UK, Grunenberg L, Saha D, Johannsen S, Sedelmeier J, Van der Eycken EV, Ley SV. Angew. Chem. Int. Ed. 2017; 56: 15136
    • 24c Chilamari M, Immel JR, Bloom S. ACS Catal. 2020; 10: 12727
    • 24d Yue F, Dong J, Liu Y, Wang Q. Org. Lett. 2021; 23: 2477
  • 25 Zhang L, Liu Z, Wang R, Jin Y, Xia X.-F. Synlett 2018; 29: 1520
  • 26 Niu Y.-N, Xia X.-F, Yuan Y. Synlett 2018; 29: 617
    • 27a Williams TM, Ciccarone TM, MacTough SC, Rooney CS, Balani SK, Condra JH, Emini EA, Goldman ME, Greenlee WJ. J. Med. Chem. 1993; 36: 1291
    • 27b Vedula MS, Pulipaka AB, Venna C, Chintakunta VK, Jinnapally S, Kattuboina VA, Vallakati RK, Basetti V, Akella V, Rajgopal S, Reka AK, Teepireddy SK, Mamnoor PK, Rajagopalan R, Bulusu G, Khandelwal A, Upreti VV, Mamidi SR. Eur. J. Med. Chem. 2003; 38: 811
    • 27c Rai G, Brimacombe KR, Mott BT, Urban DJ, Hu X, Yang S.-M, Lee TD, Cheff DM, Kouznetsova J, Benavides GA, Pohida K, Kuenstner EJ, Luci DK, Lukacs CM, Davies DR, Dranow DM, Zhu H, Sulikowski G, Moore WJ, Stott GM, Flint AJ, Hall MD, Darley-Usmar VM, Neckers LM, Dang CV, Waterson AG, Simeonov A, Jadhav A, Maloney DJ. J. Med. Chem. 2017; 60: 9184
    • 27d Li L, Jiang X, Huang S, Ying Z, Zhang Z, Pan C, Li S, Wang X, Zhang Z. ACS Med. Chem. Lett. 2017; 8: 407
    • 27e Philp J, Lawhorn BG, Graves AP, Shewchuk L, Rivera KL, Jolivette LJ, Holt DA, Gatto GJ. Jr, Kallander LS. J. Med. Chem. 2018; 61: 3076
    • 27f Lin S.-Y, Yeh T.-K, Kuo C.-C, Song J.-S, Cheng M.-F, Liao F.-Y, Chao M.-W, Huang H.-L, Chen Y.-L, Yang C.-Y, Wu M.-H, Hsieh C.-L, Hsiao W, Peng Y.-H, Wu J.-S, Lin L.-M, Sun M, Chao Y.-S, Shih C, Wu S.-Y, Pan S.-L, Hung M.-S, Ueng S.-H. J. Med. Chem. 2016; 59: 419
    • 28a Trost BM, Chadiri MR. J. Am. Chem. Soc. 1984; 106: 7260
    • 28b Alba AR, Companyó X, Rios R. Chem. Soc. Rev. 2010; 39: 2018
    • 28c Nielsen M, Jacobsen CB, Holub N, Paixão MW, Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 2668
    • 29a Asai T, Takeuchi T, Diffenderfer J, Sibley LD. Antimicrob. Agents Chemother. 2002; 46: 2393
    • 29b Lavey BJ, Kozlowski JA, Hipkin RW, Gonsiorek W, Lundell DJ, Piwinski JJ, Narula S, Lunn CA. Bioorg. Med. Chem. Lett. 2005; 15: 783
    • 29c Gijsen HJ. M, De Cleyn MA. J, Surkyn M, Van Lommen GR. E, Verbist BM. P, Nijsen MJ. M. A, Meert T, Van Wauwe J, Aerssens J. Bioorg. Med. Chem. Lett. 2012; 22: 547
    • 30a Fleming FF. Nat. Prod. Rep. 1999; 16: 597
    • 30b May EL, Jacobson AE, Mattson MV, Traynor JR, Woods JH, Harris LS, Bowman ER, Aceto MD. J. Med. Chem. 2000; 43: 5030
    • 30c Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 31a Li L, Chen H, Mei M, Zhou L. Chem. Commun. 2017; 53: 11544
    • 31b Yu X, Chen J, Wang P, Yang M, Liang D, Xiao W. Angew. Chem. Int. Ed. 2018; 57: 738
    • 31c Zhang J, Li X, Xie W, Ye S, Wu J. Org. Lett. 2019; 21: 4950
    • 31d Zhao B, Kong X, Xu B. Tetrahedron Lett. 2019; 60: 2063
    • 31e Zheng M, Li G, Lu H. Org. Lett. 2019; 21: 1216
    • 31f Hu Y, Ye Z, Xia P, Song D, Li X, Liu Z, Liu F, Chen K, Xiang H, Yang H. J. Org. Chem. 2021; 86: 4245
    • 31g Gu Y.-R, Duan X.-H, Yang L, Guo L.-N. Org. Lett. 2017; 19: 5908
    • 31h Yang H.-B, Pathipati SR, Selander N. ACS Catal. 2017; 7: 8441
    • 31i Davies J, Morcillo SP, Douglas JJ, Leonori D. Chem. Eur. J. 2018; 24: 12154
    • 31j Xiao F, Guo Y, Zeng Y.-F. Adv. Synth. Catal. 2021; 363: 120
  • 32 Xu X, Li X, Wang Z, Yan X, He X, Yan X. Synlett 2020; 31: 809

    • The reaction mechanism of 1 and 2:
    • 33a Ji W, Tan H, Wang M, Li P, Wang L. Chem. Commun. 2016; 52: 1462
    • 33b Li X, Han M, Wang B, Wang L, Wang M. Org. Biomol. Chem. 2019; 17: 6612

    • The reaction mechanism of 1 and 4:
    • 33c Jiang Y.-Q, Li J, Feng Z.-W, Xu G.-Q, Shi X, Ding Q.-J, Li W, Ma C.-H, Yu B. Adv. Synth. Catal. 2020; 362: 2609
    • 33d Yang F.-L, Tian S.-K. Tetrahedron Lett. 2017; 58: 487
    • 33e Zhao S, Chen K, Zhang L, Yang W, Huang D. Adv. Synth. Catal. 2020; 362: 3516
    • 33f Yu W, Hu P, Fan Y, Yu C, Yan X, Li X, Xu X. Org. Biomol. Chem. 2015; 13: 3308
    • 33g Zhang M, Xie P, Zhao W, Niu B, Wu W, Bian Z, Pittman CU. Jr, Zhou A. J. Org. Chem. 2015; 80: 4176
    • 33h Wang Z, He W.-M. Chin. J. Org. Chem. 2019; 39: 3594

    • The reaction mechanism of 1 and 6:
    • 33i Tang Q, Liu X, Liu S, Xie H, Liu W, Zeng J, Cheng P. RSC Adv. 2015; 5: 89009
  • 34 Xu J, Yang Z, Hua J, Lin Y, Bian M, Li Y, Liu C, He W, Fang Z, Guo K. Org. Chem. Front. 2020; 7: 3223