Synthesis 2022; 54(08): 1989-1995
DOI: 10.1055/a-1711-6097
feature

Cobalt-Catalyzed Glaser-type Homocoupling Reaction

Jun-Fa Han
,
Peng Guo
,
Lin Chen
,
Ke-Yin Ye
Financial support from the National Natural Science Foundation of China (No. 22171046 and 21901041), Hundred-Talent Project of Fujian (No. 50012742), and Fuzhou University (No. 510841) is gratefully acknowledged.


Abstract

A highly efficient cobalt-catalyzed homocoupling of terminal alkynes with di-tert-butyldiaziridinone as the oxidant has been developed. The protocol tolerates a wide array of terminal alkynes, both activated and unactivated alkynes, to afford the corresponding conjugated 1,3-diynes. The mild reaction conditions further allow late-stage homocoupling of alkynes derived from complex natural products.

Supporting Information



Publication History

Received: 27 October 2021

Accepted after revision: 02 December 2021

Accepted Manuscript online:
02 December 2021

Article published online:
21 January 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Shi Shun AL. K, Tykwinski RR. Angew. Chem. Int. Ed. 2006; 45: 1034
  • 2 Shi W. Curr. Organocatal. 2015; 2: 2
    • 4a Kinjo R, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2011; 50: 5560
    • 4b Wang L, Yu X, Feng X, Bao M. J. Org. Chem. 2013; 78: 1693
    • 4c Weber SM, Hilt G. Org. Lett. 2019; 21: 4106
    • 4d Kramer S, Madsen JL. H, Rottländer M, Skrydstrup T. Org. Lett. 2010; 12: 2758
    • 4e Wang L, Yu X, Feng X, Bao M. Org. Lett. 2012; 14: 2418
  • 5 Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
  • 6 Siemsen P, Livingston RC, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
    • 7a Eglinton G, Galbraith AR. Chem. Ind. (London) 1956; 737
    • 7b Eglinton G, Galbraith AR. J. Chem. Soc. 1959; 889
  • 8 Hay AS. J. Org. Chem. 1962; 27: 3320
  • 9 Sindhu KS, Anilkumar G. RSC Adv. 2014; 4: 27867
  • 10 Cobalt Catalysis in Organic Synthesis: Methods and Reactions. Hapke M, Gerhard H. Wiley-VCH; Weinheim: 2020
    • 11a Hammann JM, Hofmayer MS, Lutter FH, Thomas L, Knochel P. Synthesis 2017; 49: 3887
    • 11b Green SA, Crossley SW. M, Matos JL. M, Vásquez-Céspedes S, Shevick SL, Shenvi RA. Acc. Chem. Res. 2018; 51: 2628
    • 11c Shigehisa H. Chem. Pharm. Bull. 2018; 66: 339
    • 11d Cheng B, Lu P, Zhao J, Lu Z. Chin. J. Org. Chem. 2019; 39: 1704
    • 11e Yin Y, Ouyang D, Wang J, Zhu R. Sci. Sin.: Chim. 2020; 50: 1217
    • 11f Zhong J, Yu Y, Zhang D, Ye K. Chin. Chem. Lett. 2021; 32: 963
    • 12a Schlubach HH, Franzen V. Justus Liebigs Ann. Chem. 1951; 572: 116
    • 12b Leeming MG, Khairallah GN, Osburn S, Vikse K, O’Hair RA. J. Aust. J. Chem. 2014; 67: 701
  • 13 Krafft ME, Hirosawa C, Dalal N, Ramsey C, Stiegman A. Tetrahedron Lett. 2001; 42: 7733
  • 14 Hilt G, Hengst C, Arndt M. Synthesis 2009; 395
  • 15 Xu D, Sun Q, Quan Z, Wang X, Sun W. Asian J. Org. Chem. 2018; 7: 155
    • 16a Guo P, Li Y, Zhang X.-G, Han J.-F, Yu Y, Zhu J, Ye K.-Y. Org. Lett. 2020; 22: 3601
    • 16b Guo P, Han J.-F, Yuan G.-C, Chen L, Liao J.-B, Ye K.-Y. Org. Lett. 2021; 23: 4067
    • 16c Zhang X.-G, Guo P, Han J.-F, Ye K.-Y. Chem. Commun. 2020; 56: 8512
  • 17 Zhu Y, Cornwall RG, Du H, Zhao B, Shi Y. Acc. Chem. Res. 2014; 47: 3665
  • 18 Zhu Y, Shi Y. Org. Biomol. Chem. 2013; 11: 7451
    • 19a Tanimoto S, Ichimura A. J. Chem. Educ. 2013; 90: 778
    • 19b Kim RS, Surendranath Y. ACS Cent. Sci. 2019; 5: 1179
    • 19c Ambolikar AS, Guin SK, Neogy S. New J. Chem. 2019; 43: 18210
  • 20 Jiang J, Ding C, Li L, Gao C, Jiang Y, Tan C, Hua R. Tetrahedron Lett. 2014; 55: 6635
  • 21 Scheuble M, Goll M, Ludwigs S. Macromol. Rapid Commun. 2015; 36: 115
  • 22 Radhika S, Harry NA, Neetha M, Anilkumar G. Org. Biomol. Chem. 2019; 17: 9081
  • 23 Hansen KB, Leighton JL, Jacobsen EN. J. Am. Chem. Soc. 1996; 118: 10924
  • 24 Liu Z, Li Z. Eur. J. Org. Chem. 2021; 2021: 302
  • 25 Singh M, Singh AS, Mishra N, Agrahari AK, Tiwari VK. ACS Omega 2019; 4: 2418
  • 26 Park J, Park E, Kim A, Park S.-A, Lee Y, Chi K.-W, Jung YH, Kim IS. J. Org. Chem. 2011; 76: 2214
  • 27 Spitler EL, Koo BT, Novotney JL, Colson JW, Uribe-Romo FJ, Gutierrez GD, Clancy P, Dichtel WR. J. Am. Chem. Soc. 2011; 133: 19416
  • 28 Murugan K, Nainamalai D, Kanagaraj P, Nagappan SG, Palaniswamy S. Appl. Organomet. Chem. 2020; 34: 5778
  • 29 Sagadevan A, Charpe VP, Hwang KC. Catal. Sci. Technol. 2016; 6: 7688
  • 30 Tang S, Li L, Ren X, Li J, Yang G, Li H, Yuan B. Green Chem. 2019; 21: 2899
  • 31 Nasr-Esfahani M, Mohammadpoor-Baltork I, Khosropour AR, Moghadam M, Mirkhani V, Tangestaninejad S, Agabekov V, Rudbari HA. RSC Adv. 2014; 4: 14291
  • 32 Li Y, Cheng L, Chen L, Li B, Sun N, Qing N. Chin. J. Org. Chem. 2016; 36: 2426