Synthesis 2022; 54(08): 1908-1918
DOI: 10.1055/a-1710-6289
short review

Recent Advances in the Smiles Rearrangement: New Opportunities for Arylation

David M. Whalley
,
Michael F. Greaney


Abstract

The Smiles rearrangement has undergone a renaissance in recent years providing new avenues for non-canonical arylation techniques in both the radical and polar regimes. This short review will discuss recent applications of the reaction (from 2017 to late 2021), including its relevance to areas such as heterocycle synthesis and the functionalization of alkenes and alkynes as well as glimpses at new directions for the field.

1 Introduction

2 Polar Smiles Rearrangements

3 Radical Smiles: Alkene and Alkyne Functionalization

4 Radical Smiles: Rearrangements via C–X Bond Cleavage

5 Radical Smiles: Miscellaneous Rearrangements

6 Conclusions



Publication History

Received: 15 October 2021

Accepted after revision: 01 December 2021

Accepted Manuscript online:
01 December 2021

Article published online:
08 February 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Snape TJ. Chem. Soc. Rev. 2008; 37: 2452
  • 2 Holden CM, Greaney MF. Chem. Eur. J. 2017; 23: 8992
  • 3 Henderson AR. P, Kosowan JR, Wood TE. Can. J. Chem. 2017; 95: 483
  • 4 Allart-Simon I, Gérard S, Sapi J. Molecules 2016; 21: 878
  • 5 Allen AR, Noten EA, Stephenson CR. J. Chem. Rev. 2021; 122, 2: 2695
  • 6 Huynh M, De Abreu M, Belmont P, Brachet E. Chem. Eur. J. 2021; 27: 3581
  • 7 Warren AL, Smiles S. J. Chem. Soc. 1931; 914
  • 8 Levy AA, Rains HC, Smiles S. J. Chem. Soc. 1931; 3264
  • 9 Naito T, Dohmori R, Nagase O. J. Pharm. Soc. Jpn. 1954; 74: 593
  • 10 Naito T, Dohmori R, Shimoda M. Pharm. Bull. 1955; 3: 34
  • 11 Truce WE, Ray WJ, Norman OL, Eickemeyer DB. J. Am. Chem. Soc. 1958; 80: 3625
  • 12 Loven R, Speckamp WN. Tetrahedron Lett. 1972; 13: 1567
  • 13 Köhler JJ, Speckamp WN. Tetrahedron Lett. 1977; 18: 631
  • 14 Motherwell WB, Pennell AM. K. J. Chem. Soc., Chem. Commun. 1991; 877
  • 15 Da Mata ML. E. N, Motherwell WB, Ujjainwalla F. Tetrahedron Lett. 1997; 38: 137
  • 16 Da Mata ML. E. N, Motherwell WB, Ujjainwalla F. Tetrahedron Lett. 1997; 38: 141
  • 17 Bonfand E, Forslund L, Motherwell WB, Vázquez S. Synlett 2000; 475
  • 18 Waldau E, Pütter R. Angew. Chem. Int. Ed. 1972; 11: 826
  • 19 Rasheed OK, Hardcastle IR, Raftery J, Quayle P. Org. Biomol. Chem. 2015; 13: 8048
  • 20 Holden CM, Sohel SM. A, Greaney MF. Angew. Chem. Int. Ed. 2016; 55: 2450
  • 21 Dey C, Katayev D, Ylijoki KE. O, Kündig EP. Chem. Commun. 2012; 48: 10957
  • 22 Brachet E, Marzo L, Selkti M, König B, Belmont P. Chem. Sci. 2016; 7: 5002
  • 23 Pudlo M, Allart-Simon I, Tinant B, Gérard S, Sapi J. Chem. Commun. 2012; 48: 2442
  • 24 Clayden J, Farnaby W, Grainger DM, Hennecke U, Mancinelli M, Tetlow DJ, Hillier IH, Vincent MA. J. Am. Chem. Soc. 2009; 131: 3410
  • 25 Clayden J, Donnard M, Lefranc J, Minassi A, Tetlow DJ. J. Am. Chem. Soc. 2010; 132: 6624
  • 26 Atkinson RC, Fernández-Nieto F, Mas Rosellõ J, Clayden J. Angew. Chem. Int. Ed. 2015; 54: 8961
  • 27 Abrams R, Jesani MH, Browning A, Clayden J. Angew. Chem. Int. Ed. 2021; 60: 11272
  • 28 Costil R, Lefebvre Q, Clayden J. Angew. Chem. Int. Ed. 2017; 56: 14602
  • 29 Millward MJ, Ellis E, Ward JW, Clayden J. Chem. Sci. 2021; 12: 2091
  • 30 Cativiela C, Díaz-de-Villegas MD. Tetrahedron: Asymmetry 2007; 18: 569
  • 31 Leonard DJ, Ward JW, Clayden J. Nature 2018; 562: 105
  • 32 Barlow HL, Rabet PT. G, Durie A, Evans T, Greaney MF. Org. Lett. 2019; 21: 9033
  • 33 Chu X.-Q, Ge D, Cui Y.-Y, Shen Z.-L, Li C.-J. Chem. Rev. 2021; 121: 12548
  • 34 Kang L, Wang F, Zhang J, Yang H, Xia C, Qian J, Jiang G. Org. Lett. 2021; 23: 1669
  • 35 Matsuzawa T, Hosoya T, Yoshida S. Org. Lett. 2021; 23: 2347
  • 36 Pluta K, Jeleń M, Morak-Młodawska B. J. Mol. Struct. 2020; 1204
  • 37 Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
  • 38 Janssen-Müller D, Singha S, Lied F, Gottschalk K, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 6276
  • 39 Yasui K, Kamitani M, Fujimoto H, Tobisu M. Org. Lett. 2021; 23: 1572
  • 40 An JM, Kang S, Huh E, Kim Y, Lee D, Jo H, Joung JF, Kim VJ, Lee JY, Dho YS, Jung Y, Hur JK, Park C, Jung J, Huh Y, Ku JL, Kim S, Chowdhury T, Park S, Kang JS, Oh MS, Park CK, Kim D. Chem. Sci. 2020; 11: 5658
  • 41 Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R, Rosenthal M, Wen PY, Stupp R, Reifenberger G. Nat. Rev. Dis. Prim. 2015; 1: 15017
  • 42 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 43 Tu J.-L, Tang W, Liu F. Org. Chem. Front. 2021; 8: 3712
  • 44 Hu XQ, Chen JR, Wei Q, Liu FL, Deng QH, Beauchemin AM, Xiao WJ. Angew. Chem. Int. Ed. 2014; 53: 12163
  • 45 Monos TM, McAtee RC, Stephenson CR. J. Science 2018; 361: 1369
  • 46 Whalley DM, Duong HA, Greaney MF. Chem. Eur. J. 2019; 25: 1927
  • 47 Abrams R, Clayden J. Angew. Chem. Int. Ed. 2020; 59: 11600
  • 48 Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
  • 49 Kong W, Casimiro M, Fuentes N, Merino E, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 13086
  • 50 Kong W, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
  • 51 Kong W, Fuentes N, García-Domínguez A, Merino E, Nevado C. Angew. Chem. Int. Ed. 2015; 54: 2487
  • 52 Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J. Am. Chem. Soc. 2015; 137: 964
  • 53 Hervieu C, Kirillova MS, Suárez T, Müller M, Merino E, Nevado C. Nat. Chem. 2021; 13: 327
  • 54 Chen F, Shao Y, Li M, Yang C, Su SJ, Jiang H, Ke Z, Zeng W. Nat. Commun. 2021; 12: 3304
  • 55 Wang ZS, Chen YB, Zhang HW, Sun Z, Zhu C, Ye LW. J. Am. Chem. Soc. 2020; 142: 3636
  • 56 Gao X, Li C, Yuan Y, Xie X, Zhang Z. Org. Biomol. Chem. 2020; 18: 263
  • 57 Yan J, Cheo HW, Teo WK, Shi X, Wu H, Idres SB, Deng LW, Wu J. J. Am. Chem. Soc. 2020; 142: 11357
  • 58 Fuss D, Wu YQ, Grossi MR, Hollett JW, Wood TE. J. Phys. Org. Chem. 2018; 31: e3742
  • 59 De Abreu M, Belmont P, Brachet E. J. Org. Chem. 2021; 86: 3758
  • 60 Alpers D, Cole KP, Stephenson CR. J. Angew. Chem. Int. Ed. 2018; 57: 12167
  • 61 Gillaizeau-Simonian N, Barde E, Guérinot A, Cossy J. Chem. Eur. J. 2021; 27: 4004
  • 62 Friese FW, Mück-Lichtenfeld C, Studer A. Nat. Commun. 2018; 9: 2808
  • 63 Radhoff N, Studer A. Angew. Chem. Int. Ed. 2021; 60: 3561
  • 64 Liang S, Wei K, Lin Y, Liu T, Wei D, Han B, Yu W. Org. Lett. 2021; 23: 4527
  • 65 Faderl C, Budde S, Kachkovskyi G, Rackl D, Reiser O. J. Org. Chem. 2018; 83: 12192
  • 66 Johnson S, Kovács E, Greaney MF. Chem. Commun. 2020; 56: 3222
  • 67 Ruzi R, Ma J, Yuan XA, Wang W, Wang S, Zhang M, Dai J, Xie J, Zhu C. Chem. Eur. J. 2019; 25: 12724
  • 68 Motherwell WB, Vazquez S. Tetrahedron Lett. 2000; 41: 9667
  • 69 Li J, Liu Z, Wu S, Chen Y. Org. Lett. 2019; 21: 2077
  • 70 Gonzalez-Gomez JC, Ramirez NP, Lana-Villarreal T, Bonete P. Org. Biomol. Chem. 2017; 15: 9680
  • 71 Xia ZH, Dai L, Gao ZH, Ye S. Chem. Commun. 2020; 56: 1525
  • 72 Dou Q, Li CJ, Zeng H. Chem. Sci. 2020; 11: 5740
  • 73 Lardy SW, Luong KC, Schmidt VA. Chem. Eur. J. 2019; 25: 15267
  • 74 Lawson CA, Dominey AP, Williams GD, Murphy JA. Chem. Commun. 2020; 56: 11445
  • 75 Chang X, Zhang Q, Guo C. Org. Lett. 2019; 21: 4915
  • 76 Liu C, Jiang Q, Lin Y, Fang Z, Guo K. Org. Lett. 2020; 22: 795
  • 77 Whalley DM, Seayad J, Greaney MF. Angew. Chem. Int. Ed. 2021; 60: 22219