Synlett 2022; 33(05): 401-408
DOI: 10.1055/a-1700-6453
synpacts

Radical Fluorosulfonylation: Accessing Alkenylsulfonyl Fluorides from Alkenes and Alkynes

Xingliang Nie
,
Saihu liao
The National Natural Science Foundation of China (21602028), the Recruitment Program of Global Experts, the Beijing National Laboratory for Molecular Sciences (BNLMS201913), and Fuzhou University are gratefully acknowledged for their financial support.


Abstract

Sulfonyl fluorides have widespread applications in many fields. In particular, the increasing research interest on the study of sulfonyl fluorides in the context of chemical biology and drug discovery in the past decade has raised a high demand for new and efficient methods for the synthesis of sulfonyl fluorides. Even though many synthetic routes have been developed in recent years, the corresponding radical fluorosulfonylation remains elusive. Here, we report our efforts toward this goal, and the identification of sulfuryl chlorofluoride (FSO2Cl) as an effective fluorosulfonyl radical precursor, as well as the development of radical fluorosulfonylation of alkenes and radical trans-chloro/fluorosulfonylation of alkynes.

1 Introduction

1.1 Functional Group Constructions

1.2 Modular Synthesis with FSO2-Containing Synthetic Blocks

1.3 Direct Fluorosulfonylation

2 Radical Fluorosulfonylation of Alkenes with FSO2Cl

3 Mechanistic Study

4 Radical Chloro/Fluorosulfonylation of Alkynes

5 Summary and Outlook



Publikationsverlauf

Eingereicht: 05. November 2021

Angenommen nach Revision: 18. November 2021

Accepted Manuscript online:
18. November 2021

Artikel online veröffentlicht:
17. Dezember 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
    • 1b Fattah TA, Saeed A, Albericio F. J. Fluorine Chem. 2018; 213: 87
    • 1c Chinthakindi PK, Arvidsson PI. Eur. J. Org. Chem. 2018; 3648
    • 1d Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. Chem. Soc. Rev. 2019; 48: 4731
    • 1e Xu L, Dong J. Chin. J. Chem. 2020; 38: 414
    • 1f Lee C, Cook AJ, Elisabeth JE, Friede NC, Sammis GM, Ball ND. ACS Catal. 2021; 11: 6578
    • 2a Schimler SD, Cismesia MA, Hanley PS, Froese RD. J, Jansma MJ, Bland DC, Sanford MS. J. Am. Chem. Soc. 2017; 139: 1452
    • 2b Epifanov M, Foth PJ, Gu F, Barrillon C, Kanani SS, Higman CS, Hein JE, Sammis GM. J. Am. Chem. Soc. 2018; 140: 16464
    • 2c Zha G.-F, Fang W.-Y, Li Y.-G, Leng J, Chen X, Qin H.-L. J. Am. Chem. Soc. 2018; 140: 17666
    • 2d Meng G, Guo T, Ma T, Zhang J, Shen Y, Sharpless KB, Dong J. Nature 2019; 574: 86
    • 2e Smedley CJ, Zheng Q, Gao B, Li S, Molino A, Duivenvoorden HM, Parker BS, Wilson DJ. D, Sharpless KB, Moses JE. Angew. Chem. Int. Ed. 2019; 58: 4552
    • 2f Moku B, Fang WY, Leng J, Li L, Zha GF, Rakesh KP, Qin HL. iScience 2019; 21: 695
    • 2g Foth PJ, Gu F, Bolduc TG, Kanani SS, Sammis GM. Chem. Sci. 2019; 10: 10331
    • 2h Giel MC, Smedley CJ, Mackie ER. R, Guo T, Dong J, Soares daCosta T. P, Moses JE. Angew. Chem. Int. Ed. 2020; 59: 1181
    • 2i Mendel M, Kalvet I, Hupperich D, Magnin G, Schoenebeck F. Angew. Chem. Int. Ed. 2020; 59: 2115
    • 2j Liang DD, Streefkerk DE, Jordaan D, Wagemakers J, Baggerman J, Zuilhof H. Angew. Chem. Int. Ed. 2020; 59: 7494
    • 2k Liu C, Yang C, Hwang S, Ferraro SL, Flynn JP, Niu J. Angew. Chem. Int. Ed. 2020; 59: 18435
    • 2l Mahapatra S, Woroch CP, Butler TW, Carneiro SN, Kwan SC, Khasnavis SR, Gu J, Dutra JK, Vetelino BC, Bellenger J, am Ende CW, Ball ND. Org. Lett. 2020; 22: 4389
    • 2m Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. Angew. Chem. Int. Ed. 2021; 60: 7397
    • 3a Dong J, Sharpless KB, Kwisnek L, Oakdale JS, Fokin VV. Angew. Chem. Int. Ed. 2014; 53: 9466
    • 3b Oakdale JS, Kwisnek L, Fokin VV. Macromolecules 2016; 49: 4473
    • 3c Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong J, Wu P, Sharpless KB. Nat. Chem. 2017; 9: 1083
    • 3d Wang H, Zhou F, Ren G, Zheng Q, Chen H, Gao B, Klivansky L, Liu Y, Wu B, Xu Q, Lu J, Sharpless KB, Wu P. Angew. Chem. Int. Ed. 2017; 56: 11203
    • 3e Brendel JC, Martin L, Zhang J, Perrier S. Polym. Chem. 2017; 8: 7475
    • 3f Hmissa T, Zhang X, Dhumal NR, McManus GJ, Zhou X, Nulwala HB, Mirjafari A. Angew. Chem. Int. Ed. 2018; 57: 16005
    • 3g Yang C, Flynn JP, Niu J. Angew. Chem. Int. Ed. 2018; 57: 16194
    • 3h Durie K, Yatvin J, Kovaliov M, Crane GH, Horn J, Averick S, Locklin J. Macromolecules 2018; 51: 297
    • 3i Park S, Song H, Ko N, Kim C, Kim K, Lee E. ACS Appl. Mater. Interfaces 2018; 10: 33785
    • 3j Wang P, Dong Y, Lu X, Wu Z, Chen H. Macromol. Rapid Commun. 2018; 39: 1700523
    • 3k Xiao X, Zhou F, Jiang J, Chen H, Wang L, Chen D, Xu Q, Lu J. Polym. Chem. 2018; 9: 1040
    • 3l Liu W, Zhang S, Liu S, Wu Z, Chen H. Macromol. Rapid Commun. 2019; 40: e1900310
    • 3m Wang M, Jin H.-S, Chen X.-M, Lin B.-P, Yang H. Polym. Chem. 2019; 10: 3657
    • 3n Kulow RW, Wu JW, Kim C, Michaudel Q. Chem. Sci. 2020; 11: 7807
    • 3o Wan H, Zhou S, Gu P, Zhou F, Lyu D, Xu Q, Wang A, Shi H, Xu Q, Lu J. Polym. Chem. 2020; 11: 1033
    • 3p Li S, Li G, Gao B, Pujari SP, Chen X, Kim H, Zhou F, Klivansky LM, Liu Y, Driss H, Liang D.-D, Lu J, Wu P, Zuilhof H, Moses J, Sharpless KB. Nat. Chem. 2021; 11: 858
    • 5a Brouwer AJ, Ceylan T, van der Linden T, Liskamp RM. J. Tetrahedron Lett. 2009; 50: 3391
    • 5b Adams DJ, Dai M, Pellegrino G, Wagner BK, Stern AM, Shamji AF, Schreiber SL. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 15115
    • 5c Alapafuja SO, Nikas SP, Bharathan IT, Shukla VG, Nasr ML, Bowman AL, Zvonok N, Li J, Shi X, Engen JR, Makriyannis A. J. Med. Chem. 2012; 55: 10074
    • 5d Gushwa NN, Kang S, Chen J, Taunton J. J. Am. Chem. Soc. 2012; 134: 20214
    • 5e Dubiella C, Cui H, Gersch M, Brouwer AJ, Sieber SA, Kruger A, Liskamp RM, Groll M. Angew. Chem. Int. Ed. 2014; 53: 11969
    • 5f Baranczak A, Liu Y, Connelly S, Du WG, Greiner ER, Genereux JC, Wiseman RL, Eisele YS, Bradbury NC, Dong J, Noodleman L, Sharpless KB, Wilson IA, Encalada SE, Kelly JW. J. Am. Chem. Soc. 2015; 137: 7404
    • 5g Chen W, Dong J, Plate L, Mortenson DE, Brighty GJ, Li S, Liu Y, Galmozzi A, Lee PS, Hulce JJ, Cravatt BF, Saez E, Powers ET, Wilson IA, Sharpless KB, Kelly JW. J. Am. Chem. Soc. 2016; 138: 7353
    • 5h Fadeyi O, Parikh MD, Chen MZ, Kyne RE. Jr, Taylor AP, O’Doherty I, Kaiser SE, Barbas S, Niessen S, Shi M, Weinrich SL, Kath JC, Jones LH, Robinson RP. ChemBioChem 2016; 17: 1925
    • 5i Zhao Q, Ouyang X, Wan X, Gajiwala KS, Kath JC, Jones LH, Burlingame AL, Taunton J. J. Am. Chem. Soc. 2017; 139: 680
    • 5j Fadeyi OO, Hoth LR, Choi C, Feng X, Gopalsamy A, Hett EC, Kyne RE. Jr, Robinson RP, Jones LH. ACS Chem. Biol. 2017; 12: 2015
    • 5k Mukherjee H, Debreczeni J, Breed J, Tentarelli S, Aquila B, Dowling JE, Whitty A, Grimster NP. Org. Biomol. Chem. 2017; 15: 9685
    • 5l Mortenson DE, Brighty GJ, Plate L, Bare G, Chen W, Li S, Wang H, Cravatt BF, Forli S, Powers ET, Sharpless KB, Wilson IA, Kelly JW. J. Am. Chem. Soc. 2018; 140: 200
    • 5m Liu Z, Li J, Li S, Li G, Sharpless KB, Wu P. J. Am. Chem. Soc. 2018; 140: 2919
    • 5n Wang N, Yang B, Fu C, Zhu H, Zheng F, Kobayashi T, Liu J, Li S, Ma C, Wang PG, Wang Q, Wang L. J. Am. Chem. Soc. 2018; 140: 4995
    • 5o Uematsu S, Tabuchi Y, Ito Y, Taki M. Bioconjugate Chem. 2018; 29: 1866
    • 5p Guardiola S, Prades R, Mendieta L, Brouwer AJ, Streefkerk J, Nevola L, Tarrago T, Liskamp RM. J, Giralt E. Cell Chem. Biol. 2018; 25: 1031
    • 5q Artschwager R, Ward DJ, Gannon S, Brouwer AJ, van de Langemheen H, Kowalski H, Liskamp RM. J. J. Med. Chem. 2018; 61: 5395
    • 5r Yang X, Michiels TJ. M, de Jong C, Soethoudt M, Dekker N, Gordon E, van der Stelt M, Heitman LH, van der Es D, IJzerman AP. J. Med. Chem. 2018; 61: 7892
    • 6a Xu H, Ma F, Wang N, Hou W, Xiong H, Lu F, Li J, Wang S, Ma P, Yang G, Lerner RA. Adv. Sci. 2019; 6: 1901551
    • 6b Baggio C, Udompholkul P, Gambini L, Salem AF, Jossart J, Perry JJ. P, Pellecchia M. J. Med. Chem. 2019; 62: 9188
    • 6c Zha GF, Wang SM, Rakesh KP, Bukhari SN. A, Manukumar HM, Vivek HK, Mallesha N, Qin HL. Eur. J. Med. Chem. 2019; 162: 364
    • 6d Li Q, Chen Q, Klauser PC, Li M, Zheng F, Wang N, Li X, Zhang Q, Fu X, Wang Q, Xu Y, Wang L. Cell 2020; 182: 85
    • 6e Kitamura S, Zheng Q, Woehl JL, Solania A, Chen E, Dillon N, Hull MV, Kotaniguchi M, Cappiello JR, Kitamura S, Nizet V, Sharpless KB, Wolan DW. J. Am. Chem. Soc. 2020; 142: 10899
    • 6f Teng M, Ficarro SB, Yoon H, Che J, Zhou J, Fischer ES, Marto JA, Zhang T, Gray NS. ACS Med. Chem. Lett. 2020; 11: 1269
    • 6g Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S, Albaiu D. ACS Cent. Sci. 2020; 6: 315
    • 6h Chen Y, Yan W, Guo D, Li Y, Li J, Liu H, Wei L, Yu N, Wang B, Zheng Y, Jing M, Zhao J, Ye YH. Angew. Chem. Int. Ed. 2021; 133: 22105
    • 6i Zheng Q, Xu H, Wang H, Du W.-GH, Wang N, Xiong H, Gu Y, Noodleman L, Sharpless KB, Yang G, Wu P. J. Am. Chem. Soc. 2021; 143: 3753
  • 7 Zhang J, Zhao X, Cappiello JR, Yang Y, Cheng Y, Liu G, Fang W, Luo Y, Zhang Y, Dong J, Zhang L, Sharpless KB. Proc. Natl. Acad. Sci. U.S.A. 2021; 118: e2103513118
    • 8a Bianchi TA, Cate LA. J. Org. Chem. 1977; 42: 2031
    • 8b Krutak JJ, Burpitt RD, Moore WH, Hyatt JA. J. Org. Chem. 1979; 44: 3847
    • 8c Wright SW, Hallstrom KN. J. Org. Chem. 2006; 71: 1080
    • 8d Talko A, Barbasiewicz M. ACS Sustainable Chem. Eng. 2018; 6: 6693
    • 9a Davies AT, Curto JM, Bagley SW, Willis MC. Chem. Sci. 2017; 8: 1233
    • 9b Tribby AL, Rodriguez I, Shariffudin S, Ball ND. J. Org. Chem. 2017; 82: 2294
    • 9c Laudadio G, Bartolomeu AA, Verwijlen L, Cao Y, de Oliveira KT, Noel T. J. Am. Chem. Soc. 2019; 141: 11832
    • 9d Lou TS, Bagley SW, Willis MC. Angew. Chem. Int. Ed. 2019; 58: 18859
    • 9e Liu S, Huang Y, Xu X.-H, Qing F.-L. J. Fluorine Chem. 2020; 240: 109653
    • 9f Liu Y, Yu D, Guo Y, Xiao JC, Chen QY, Liu C. Org. Lett. 2020; 22: 2281
    • 9g Pérez-Palau M, Cornella J. Eur. J. Org. Chem. 2020; 2497
    • 9h Wang L, Cornella J. Angew. Chem. Int. Ed. 2020; 59: 23510
    • 9i Xu T, Cao T, Yang M, Xu R, Nie X, Liao S. Org. Lett. 2020; 22: 3692
    • 9j Zhong T, Pang MK, Chen ZD, Zhang B, Weng J, Lu G. Org. Lett. 2020; 22: 3072
    • 9k Zhong T, Yi J.-T, Chen Z.-D, Zhuang Q.-C, Li Y.-Z, Lu G, Weng J. Chem. Sci. 2021; 12: 9359
    • 9l Zhang Z.-W, Rakesh KP, Liu J, Qin H.-L, Tang H. Org. Biomol. Chem. 2021; 19: 6021
    • 10a Chinthakindi PK, Kruger G, Govender T, Naicker T, Arvidsson PI. J. Org. Chem. 2016; 81: 2618
    • 10b Thomas J, Fokin VV. Org. Lett. 2018; 20: 3749
    • 10c Smedley CJ, Giel M.-C, Molino A, Barrow AS, Wilson DJ. D, Moses JE. Chem. Commun. 2018; 54: 6020
    • 10d Leng J, Qin H.-L. Chem. Commun. 2018; 54: 4477
    • 10e Meng Y.-P, Wang S.-M, Fang W.-Y, Xie Z.-Z, Leng J, Alsulami H, Qin H.-L. Synthesis 2019; 52: 673
    • 10f Xu R, Xu T, Yang M, Cao T, Liao S. Nat. Commun. 2019; 10: 3752
    • 10g Chen J, Huang B.-q, Wang Z.-q, Zhang X.-j, Yan M. Org. Lett. 2019; 21: 9742
    • 10h Moku B, Fang W.-Y, Leng J, Kantchev EA. B, Qin H.-L. ACS Catal. 2019; 9: 10477
    • 10i Lou TS.-B, Willis MC. Tetrahedron 2020; 76: 130782
    • 10j Zhu DY, Zhang XJ, Yan M. Org. Lett. 2021; 23: 4228
    • 11a Qin HL, Zheng Q, Bare GA, Wu P, Sharpless KB. Angew. Chem. Int. Ed. 2016; 55: 14155
    • 11b Zha GF, Zheng Q, Leng J, Wu P, Qin HL, Sharpless KB. Angew. Chem. Int. Ed. 2017; 56: 4849
    • 11c Chinthakindi PK, Govender KB, Kumar AS, Kruger HG, Govender T, Naicker T, Arvidsson PI. Org. Lett. 2017; 19: 480
    • 11d Chen XY, Wu Y, Zhou J, Wang P, Yu JQ. Org. Lett. 2019; 21: 1426
    • 11e Huang Y.-M, Wang S.-M, Leng J, Moku B, Zhao C, Alharbi NS, Qin H.-L. Eur. J. Org. Chem. 2019; 4597
    • 11f Leng J, Alharbi NS, Qin H.-L. Eur. J. Org. Chem. 2019; 6101
    • 11g Zhang ZW, Wang SM, Fang WY, Lekkala R, Qin HL. J. Org. Chem. 2020; 85: 13721
  • 12 Medley CJ, Li G, Barrow AS, Gialelis TL, Giel MC, Ottonello A, Cheng Y, Kitamura S, Wolan DW, Sharpless KB, Moses JE. Angew. Chem. Int. Ed. 2020; 59: 12460
    • 13a Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong J. Angew. Chem. Int. Ed. 2018; 57: 2605
    • 13b Zhou H, Mukherjee P, Liu R, Evrard E, Wang D, Humphrey JM, Butler TW, Hoth LR, Sperry JB, Sakata SK, Helal CJ, am Ende CW. Org. Lett. 2018; 20: 812
    • 13c Lee C, Ball ND, Sammis GM. Chem. Commun. 2019; 55: 14753
    • 14a Li Z. Chem. Phys. Lett. 1997; 269: 128
    • 14b Zeng X, Beckers H, Willner H. J. Am. Chem. Soc. 2013; 135: 2096
  • 15 Nie X, Xu T, Song J, Devaraj A, Zhang B, Chen Y, Liao S. Angew. Chem. Int. Ed. 2021; 60: 3956
  • 16 Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Angew. Chem. Int. Ed. 2021; 60: 22035
    • 17a Feng Z, Min Q.-Q, Zhao H.-Y, Gu J.-W, Zhang X. Angew. Chem. Int. Ed. 2015; 54: 1270
    • 17b Li H, Shan C, Tung CH, Xu Z. Chem. Sci. 2017; 8: 2610
    • 17c Wimmer A, König B. Beilstein J. Org. Chem. 2018; 14: 54
    • 17d Zhu J, Yang W.-C, Wang X.-D, Wu L. Adv. Synth. Catal. 2018; 360: 386
    • 17e Feng F.-F, Ma J.-A, Cahard D. J. Org. Chem. 2021; 86: 13808