CC BY-NC-ND 4.0 · Planta Medica International Open 2022; 9(01): e12-e22
DOI: 10.1055/a-1696-6851
Original Papers

Isolated Compounds from Buddleja Coriacea with Antibacterial and Anti-Inflammatory Activities in the Urinary Tract

Luis Apaza Ticona
1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
2   Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
,
Francisco Aguilar Rico
1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
,
Javier Sánchez Sánchez-Corral
1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
,
Montserrat Ortega Domenech
3   Dr. Goya Análisis, SL, Alcalá de Henares, Madrid, Spain
,
Ángel Rumbero Sánchez
1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
› Author Affiliations

Abstract

Buddleja coriacea Remy is one of the plant species used by the Bolivian population for the treatment of urinary infections. This study aimed to identify the extract, fractions, and compounds responsible for the antibacterial and anti-inflammatory activities of B. coriacea leaves. Bioguided isolation of compounds with antibacterial and anti-inflammatory activities was carried out by measuring the antibacterial effect against specific pathogenic microbial strains, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and Serratia marcescens, and the inhibition of NF-κB in RM-2 and MM.14Ov cells. Bioassay-guided isolation led to the isolation and characterisation of (4aR,4bS,5 S,6aS,6bS,9aR,10aS,10bS)-6b-glycoloyl-5-hydroxy-4a,6a-dimethyl-8-propyl-4a,4b,5,6,6a,6b,9a,10,10a,10b,11,12-dodecahydro-2H-naphtho [2',1':4,5] indeno [1,2-d][1,3] dioxol-2-one (1), 3-[3-(2-dimethylaminoethyl)-1H-indol-5-yl]-N-(4-methoxybenzyl) acrylamide (2), and (1β,11β,12α)-1,11,12-trihydroxy-11,20-epoxypicrasa-3,13(21)-diene-2,16-dione (3) by nuclear magnetic resonance and mass spectroscopy. All compounds showed antibacterial activity with minimum inhibitory concentration values of 11.64–11.81, 0.17–0.19, and 0.34–0.36 µM, respectively, on the tested strains, while the positive control, ofloxacin, had a minimum inhibitory concentration of 27.66 µM. Finally, all the compounds showed NF-κB inhibitory activity with IC50 values of 11.25–11.34, 0.15–0.16, and 0.33–0.36 µM, respectively, in all cell lines, while the positive control, celastrol, had an IC50 of 7.96 µM. Thus, this study managed to isolate and evaluate for the first time the pharmacological potential of three compounds present in the leaves of B. coriacea with antibacterial and anti-inflammatory activities.

Supplementary Material



Publication History

Received: 30 August 2021
Received: 10 October 2021

Accepted: 04 November 2021

Article published online:
07 February 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chou ST, Lo HY, Li CC, Cheng LC, Chou PC, Lee YC, Ho TY, Hsiang CY. Exploring the effect and mechanism of Hibiscus sabdariffa on urinary tract infection and experimental renal inflammation. J Ethnopharmacol 2016; 194: 617-625
  • 2 Grigoryan L, Trautner BW, Gupta K. Diagnosis and management of urinary tract infections in the outpatient setting: a review. J Am Med Assoc 2014; 312: 1677-1684
  • 3 Steenkamp V, Gouws MC, Gulumian M, Elgorashi EE, Van Staden J. Studies on antibacterial, anti-inflammatory and antioxidant activity of herbal remedies used in the treatment of benign prostatic hyperplasia and prostatitis. J Ethnopharmacol 2006; 103: 71-75
  • 4 Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13: 269-284
  • 5 Karlsson M, Scherbak N, Reid G, Jass J. Lactobacillus rhamnosus GR-1 enhances NF-kappaB activation in Escherichia coli-stimulated urinary bladder cells through TLR4. BMC Microbiol 2012; 12: 1-10
  • 6 Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 2010; 6: 29-30
  • 7 Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9: 7204-7218
  • 8 Purves JT, Hughes FM. Inflammasomes in the urinary tract: a disease-based review. Am J Physiol Ren Physiol 2016; 311: F653-F662
  • 9 Zhang H, Sun SC. NF-κB in inflammation and renal diseases. Cell Biosci 2015; 5: 1-12
  • 10 Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009; 1: 1-11
  • 11 Grover S, Srivastava A, Lee R, Tewari AK, Te AE. Role of inflammation in bladder function and interstitial cystitis. Ther Adv Urol 2011; 3: 19-33
  • 12 Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007; 449: 819-826
  • 13 Das S. Natural therapeutics for urinary tract infections-a review. Futur J Pharm Sci 2020; 6: 64
  • 14 Devi N, Rani K, Kharb P, Prasad M. Herbal Medicine for Urinary Tract Infections with the Blazing Nanotechnology. J Nanosci Nanotechnol 2021; 21: 3495–3512.
  • 15 Shaheen G, Akram M, Jabeen Shah SMA, Munir N, Daniyal M, Riaz M, Tahir IM, Ghauri AO, Sultana S, Zainab R, Khan M. Therapeutic potential of medicinal plants for the management of urinary tract infection: A systematic review. Clin Exp Pharmacol Physiol 2019; 46: 613-624
  • 16 Morales MA, Collado C, Alvarez N, Bustamante S. Fundamentación básica al uso etnomédico de Matico (Buddleja globosa Hope). Rev Fitoter 2015; 15: 37-51
  • 17 Bussmann RW, Paniagua Zambrana NY, Moya Huanca LA, Hart R. Changing markets - Medicinal plants in the markets of La Paz and El Alto, Bolivia. J Ethnopharmacol 2016; 193: 76-95
  • 18 De Lucca DM, Zalles AJ. Utasan Utjir Qollanaka. Medicinas junto a nuestra casa. La Paz, Bolivia: Agencia Española de Cooperación Internacional; 2006. pp 98.
  • 19 Paniagua-Zambrana NY, Bussmann RW. Buddleja americana L. Buddleja coriacea J. Rémy Scrophulariaceae. In: Paniagua-Zambrana NY, Bussmann RW, editors. Ethnobotany of the Andes. Heidelberg: Springer; 2020: 385-390
  • 20 Siñani GB. Determinacion de la actividad antiinflamatoria en interaccion de extractos de la planta Kiswara (Buddleja coriácea Rémy) con Dexametasona, mediante los ensayos de edema plantar y auricular en modelo murino [dissertation]. La Paz: Universidad Mayor San Andres; 2009
  • 21 Ryrfeld Å, Tönnesson M, Nilsson E, Wikby A. Pharmacokinetic studies of a potent glucocorticoid (Budesonide) in dogs by high-performance liquid chromatography. J Steroid Biochem 1979; 10: 317-324
  • 22 Barf TA, de Boer P, Peroutka SJ, Svensson K, Ennis MD, Ghazal NB, Mcguire JC, Smith MW. 5-HT 1D receptor agonist properties of novel 2-[5-[[(trifluoromethyl) sulfonyl]oxy]indolyl]ethylamines and their use as synthetic intermediates. J Med Chem 1996; 39: 4717-4726
  • 23 Ishibashi M, Yoshimura S, Tsuyuki T, Takahashi T, Itai A, Iitaka Y. Structure Determination of Bitter Principles of Ailanthus altissima. Structures of Shinjulactones F, I, J, and K. Bull Chem Soc Jpn 1984; 57: 2885-2892
  • 24 Morita H, Kishi E, Takeya K, Itokawa H, Tanaka O. New Quassinoids from the Roots of Eurycoma longifolia . Chem Lett 1990; 19: 749-752
  • 25 Bilia AR, Bergonzi MC, Mazzi G, Vincieri FF. NMR spectroscopy: a useful tool for characterisation of plant extracts, the case of supercritical CO2 arnica extract. J Pharm Biomed Anal 2002; 30: 321-330
  • 26 Deborde C, Fontaine JX, Jacob D, Botana A, Nicaise V, Richard-Forget F, Lecomte S, Decourtil C, Hamade K, Mesnard F, Moing A, Molinié R. Optimizing 1D 1H-NMR profiling of plant samples for high throughput analysis: extract preparation, standardization, automation and spectra processing. Metabolomics 2019; 15: 1–12
  • 27 Chauthe SK, Sharma RJ, Aqil F, Gupta RC, Singh IP. Quantitative NMR: an applicable method for quantitative analysis of medicinal plant extracts and herbal products. Phytochem Anal 2012; 23: 689-696
  • 28 Adedapo AA, Jimoh FO, Koduru S, Masika PJ, Afolayan AJ. Assessment of the medicinal potentials of the methanol extracts of the leaves and stems of Buddleja saligna . BMC Complement Altern Med 2009; 6: 1–8
  • 29 Chen CY, Chen YH, Lu PL, Lin WR, Chen TC, Lin CY. Proteus mirabilis urinary tract infection and bacteremia: risk factors, clinical presentation, and outcomes. J Microbiol Immunol Infect 2012; 45: 228-236
  • 30 Cristea OM, Avrămescu CS, Bălășoiu M, Popescu FD, Popescu F, Amzoiu MO. Urinary tract infection with Klebsiella pneumoniae in Patients with Chronic Kidney Disease. Curr Heal Sci J 2017; 43: 137-148
  • 31 Mensah AY, Sampson J, Houghton PJ, Hylands PJ, Westbrook J, Dunn M, Hughes MA, Cherry GW. Effects of Buddleja globosa leaf and its constituents relevant to wound healing. J Ethnopharmacol 2001; 77: 219-226
  • 32 Wang P, Wang X, Yang X, Liu Z, Wu M, Li G. Budesonide suppresses pulmonary antibacterial host defence by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells. BMC Immunol 2013; 14: 1–9
  • 33 Zhang Y, Reenstra WW, Chidekel A. Antibacterial activity of apical surface fluid from the human airway cell line Calu-3: pharmacologic alteration by corticosteroids and β2-agonists. Am J Respir Cell Mol Biol 2001; 25: 196-202
  • 34 Apaza Ticona L, Rumbero Sánchez Á, Sánchez Sánchez-Corral J, Iglesias Moreno P, Ortega Domenech M. Anti-inflammatory, pro-proliferative and antimicrobial potential of the compounds isolated from Daemonorops draco (Willd.) Blume. J Ethnopharmacol 2021; 268: 113668
  • 35 Bououden W, Benguerba Y. Computational Quantum Chemical Study, Drug-Likeness and In Silico Cytotoxicity Evaluation of Some Steroidal Anti-Inflammatory Drugs. J Drug Deliv Ther 2020; 10: 68-74
  • 36 Yang XL, Yuan YL, Zhang DM, Li F, Ye WC. Shinjulactone O, a new quassinoid from the root bark of Ailanthus altissima . Nat Prod Res 2014; 28: 1432-1437
  • 37 Lin Z, Will Y. Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicol Sci 2012; 126: 114-127
  • 38 Barrette AM, Roberts JK, Chapin C, Egan EA, Segal MR, Oses-Prieto JA, Chand S, Burlingame AL, Ballard PL. Antiinflammatory Effects of Budesonide in Human Fetal Lung. Am J Respir Cell Mol Biol 2016; 5: 623-632
  • 39 Bayiha JC, Evrard B, Cataldo D, De Tullio P, Mingeot-Leclercq MP. The Budesonide-Hydroxypropyl-β-Cyclodextrin Complex Attenuates ROS Generation, IL-8 Release and Cell Death Induced by Oxidant and Inflammatory Stress. Study on A549 and A-THP-1 Cells. Molecules 2020; 25: 4882
  • 40 Sheridan H, Walsh JJ, Cogan C, Jordan M, McCabe T, Passante E, Frankish NH. Diastereoisomers of 2-benzyl-2, 3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol: potential anti-inflammatory agents. Bioorganic Med Chem Lett 2009; 19: 5927-5930
  • 41 Apaza Ticona L, Rumbero Sánchez Á, Gonzáles Orozco O, Ortega Domenech M. Antimicrobial compounds isolated from Tropaeolum tuberosum . Nat Prod Res 2021; 35: 4698-4702