Klin Monbl Augenheilkd 2022; 239(02): 149-157
DOI: 10.1055/a-1688-1601
Übersicht

Are There Static-Structural Biomarkers for Glaucoma with OCT?

Artikel in mehreren Sprachen: deutsch | English
Christian Yahya Mardin
Augenklinik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
› Institutsangaben

Abstract

Glaucomas lead to uniform, specific and slowly developing atrophy of the optic nerve with progressing visual field defects in late stages. Early diagnosis is challenging, but necessary as optic nerve damage is irreparable. Biomarkers with structural optical coherence tomography (OCT) flag optic atrophy but do not prove to be specific in the differential diagnosis to other forms of optic atrophy. Combination of OCT parameters and their correlation to other variables facilitate glaucoma diagnosis. Use of artificial intelligence (AI) in structural OCT images may prove to be superior and as biomarker more specific to thickness measurements of neuronal tissues alone.



Publikationsverlauf

Eingereicht: 26. September 2021

Angenommen: 28. Dezember 2021

Artikel online veröffentlicht:
24. Februar 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur/References

  • 1 Mardin C. Principles of glaucoma diagnostics with optical coherence tomography. Ophthalmologe 2015; 112: 639-645
  • 2 Schrems-Hoesl LM, Schrems WA, Laemmer R. et al. Precision of optic nerve head and retinal nerve fiber layer parameter measurements by spectral-domain optical coherence tomography. J Glaucoma 2018; 27: 407-414
  • 3 Pellegrini M, Vagge A, Ferro Desideri L. et al. Optical coherence tomography angiography in neurodegenerative disorders. J Clin Med 2020; 9: 1706 DOI: 10.3390/jcm9061706.
  • 4 Hood DC. Does ganglion cell loss precede visual field loss in glaucoma?. J Glaucoma 2019; 28: 945-951
  • 5 Nguyen J, Rothman A, Gonzalez N. et al. Macular ganglion cell and inner plexiform layer thickness is more strongly associated with visual function in multiple sclerosis than Bruch membrane opening minimum rim width or peripapillary retinal nerve fiber layer thicknesses. J Neuroophthalmol 2019; 39: 444-450
  • 6 Özbilen KT, Gündüz T, Çukurova Kartal SN. et al. Bruchʼs membrane opening-minimum rim width: an alternative OCT biomarker study for multiple sclerosis. Eur J Ophthalmol 2021; 31: 2141-2149
  • 7 Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 1999; 43: 293-320
  • 8 Gardiner SK, Demirel S, Reynaud J. et al. Changes in retinal nerve fiber layer reflectance intensity as a predictor of functional progression in glaucoma. Invest Ophthalmol Vis Sci 2016; 57: 1221-1227
  • 9 Xin D, Talamini CL, Raza AS. et al. Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects. Invest Ophthalmol Vis Sci 2011; 52: 7180-7186
  • 10 Hasegawa T, Akagi T, Yoshikawa M. et al. Microcystic inner nuclear layer changes and retinal nerve fiber layer defects in eyes with glaucoma. PLoS One 2015; 10: e0130175
  • 11 Wolff B, Azar G, Vasseur V. et al. Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study. J Ophthalmol 2014; 2014: 395189 DOI: 10.1155/2014/395189.
  • 12 Tatham AJ, Miki A, Weinreb RN. et al. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss. Ophthalmology 2014; 121: 110-118
  • 13 Akashi A, Kanamori A, Nakamura M. et al. Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma. Invest Ophthalmol Vis Sci 2013; 54: 4478-4484
  • 14 Zemborain ZZ, Jarukasetphon R, Tsamis E. et al. Optical Coherence Tomography Can Be Used to Assess Glaucomatous Optic Nerve Damage in Most Eyes With High Myopia. J Glaucoma 2020; 29: 833-845
  • 15 Rabiolo A, Mohammadzadeh V, Fatehi N. et al. Comparison of Rates of Progression of Macular OCT Measures in Glaucoma. Transl Vis Sci Technol 2020; 9: 50 DOI: 10.1167/tvst.9.7.50.
  • 16 Moghimi S, Bowd C, Zangwill LM. et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology 2019; 126: 980-988
  • 17 Shin JW, Sung KR, Lee GC. et al. Ganglion cell–inner plexiform layer change detected by optical coherence tomography indicates progression in advanced glaucoma. Ophthalmology 2017; 124: 1466-1474
  • 18 Wessel JM, Horn FK, Tornow RP. et al. Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 3613-3620
  • 19 Luo H, Yang H, Gardiner SK. et al. Factors influencing central lamina cribrosa depth: a multicenter study. Invest Ophthalmol Vis Sci 2018; 59: 2357-2370
  • 20 Leung CKS. Diagnosing glaucoma progression with optical coherence tomography. Curr Opin Ophthalmol 2014; 25: 104-111
  • 21 Paulo A, Vaz PG, Andrade De Jesus D. et al. Optical Coherence Tomography Imaging of the Lamina Cribrosa: Structural Biomarkers in Nonglaucomatous Diseases. J Ophthalmol 2021; 2021: 8844614 DOI: 10.1155/2021/8844614.
  • 22 Eraslan M, Cerman E, Yildiz Balci S. et al. The choroid and lamina cribrosa is affected in patients with Parkinsonʼs disease: enhanced depth imaging optical coherence tomography study. Acta Ophthalmol 2016; 94: 68-75
  • 23 Ghassabi Z, Kuranov R, Schuman JS. et al. In Vivo Sublayer Analysis of Human Retinal Inner Plexiform Layer Obtained by Visible-Light Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2022; 63: 18 DOI: 10.1167/iovs.63.1.18.
  • 24 Panda SK, Cheong H, Tun TA. et al. Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence. Am J Ophthalmol 2021; 236: 172-182 DOI: 10.1016/j.ajo.2021.06.010.
  • 25 Sułot D, Alonso-Caneiro D, Ksieniewicz P. et al. Glaucoma classification based on scanning laser ophthalmoscopic images using a deep learning ensemble method. PLoS One 2021; 16: e0252339