Synthesis 2022; 54(05): 1287-1300
DOI: 10.1055/a-1681-3972
feature

Towards the Development of Frustrated Lewis Pair (FLP) Catalyzed Hydrogenations of Tertiary and Secondary Carboxylic Amides

Laura Köring
,
Nikolai A. Sitte
,
Jan Paradies
The Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) is gratefully acknowledged for financial support (PA 1562/18-1). The Verband der Chemischen Industrie (VCI) is acknowledged for Kekulé grants to L.K. and N.S.


Abstract

The development of the frustrated Lewis pair catalyzed hydrogenation of tertiary and secondary amides is reviewed. Detailed insight into our strategies in order to overcome challenges during the reaction development process is provided. Furthermore, the developed chemistry is extended to the hydrogenation of polyamides and of trifluoroacetamides for the convenient introduction of trifluoroethyl groups into organic molecules.

Supporting Information



Publikationsverlauf

Eingereicht: 03. September 2021

Angenommen nach Revision: 28. Oktober 2021

Accepted Manuscript online:
28. Oktober 2021

Artikel online veröffentlicht:
04. Januar 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Welch GC, Juan RR. S, Masuda JD, Stephan DW. Science 2006; 314: 1124
  • 2 Ullrich M, Lough AJ, Stephan DW. J. Am. Chem. Soc. 2009; 131: 52
  • 3 Chase PA, Jurca T, Stephan DW. Chem. Commun. 2008; 1701
  • 4 Stephan DW, Erker G. Angew. Chem. Int. Ed. 2010; 49: 46
  • 5 Stephan DW, Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400
  • 6 Stephan DW. J. Am. Chem. Soc. 2015; 137: 10018
  • 7 Paradies J. Coord. Chem. Rev. 2019; 380: 170
  • 8 Paradies J. Eur. J. Org. Chem. 2019; 283
  • 9 Meng W, Feng X, Du H. Chin. J. Chem. 2020; 38: 625
  • 10 Spies P, Erker G, Kehr G, Bergander K, Fröhlich R, Grimme S, Stephan DW. Chem. Commun. 2007; 5072
  • 11 Lindqvist M, Borre K, Axenov K, Kótai B, Nieger M, Leskelä M, Pápai I, Repo T. J. Am. Chem. Soc. 2015; 137: 4038
  • 12 Spies P, Schwendemann S, Lange S, Kehr G, Fröhlich R, Erker G. Angew. Chem. Int. Ed. 2008; 47: 7543
  • 13 Chen D, Wang Y, Klankermayer J. Angew. Chem. Int. Ed. 2010; 49: 9475
  • 14 Zhang Z, Du H. Angew. Chem. Int. Ed. 2015; 54: 623
  • 15 Li S, Li G, Meng W, Du H. J. Am. Chem. Soc. 2016; 138: 12956
  • 16 Greb L, Oña-Burgos P, Schirmer B, Grimme S, Stephan DW, Paradies J. Angew. Chem. Int. Ed. 2012; 51: 10164
  • 17 Chernichenko K, Madarász Á, Pápai I, Nieger M, Leskelä M, Repo T. Nat. Chem. 2013; 5: 718
  • 18 Wang Y, Chen W, Lu Z, Li ZH, Wang H. Angew. Chem. Int. Ed. 2013; 52: 7496
  • 19 Mahdi T, Stephan DW. J. Am. Chem. Soc. 2014; 136: 15809
  • 20 Scott DJ, Fuchter MJ, Ashley AE. J. Am. Chem. Soc. 2014; 136: 15813
  • 21 Mahdi T, Stephan DW. Angew. Chem. Int. Ed. 2015; 54: 8511
  • 22 Légaré M.-A, Courtemanche M.-A, Rochette É, Fontaine F.-G. Science 2015; 349: 513
  • 23 Yin Q, Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 3712
  • 24 Basak S, Alvarez-Montoya A, Winfrey L, Melen RL, Morrill LC, Pulis AP. ACS Catal. 2020; 10: 4835
  • 25 Wicker G, Schoch R, Paradies J. Org. Lett. 2021; 23: 3626
  • 26 Basak S, Winfrey L, Kustiana BA, Melen RL, Morrill LC, Pulis AP. Chem. Soc. Rev. 2021; 50: 3720
  • 27 Ma Y, Lou S.-J, Hou Z. Chem. Soc. Rev. 2021; 50: 1945
  • 28 Maier AF. G, Tussing S, Schneider T, Flörke U, Qu Z.-W, Grimme S, Paradies J. Angew. Chem. Int. Ed. 2016; 55: 12219
  • 29 Kojima M, Kanai M. Angew. Chem. Int. Ed. 2016; 55: 12224
  • 30 Bader J, Maier AF. G, Paradies J, Hoge B. Eur. J. Inorg. Chem. 2017; 3053
  • 31 Soltani Y, Dasgupta A, Gazis TA, Ould DM. C, Richards E, Slater B, Stefkova K, Vladimirov VY, Wilkins LC, Willcox D, Melen RL. Cell Rep. Phys. Sci. 2020; 1: 100016
  • 32 Dasgupta A, Stefkova K, Babaahmadi R, Yates BF, Buurma NJ, Ariafard A, Richards E, Melen RL. J. Am. Chem. Soc. 2021; 143: 4451
  • 33 Paradies J. Synlett 2013; 24: 777
  • 34 Paradies J. Angew. Chem. Int. Ed. 2014; 53: 3552
  • 35 Lam J, Szkop KM, Mosaferi E, Stephan DW. Chem. Soc. Rev. 2019; 48: 3592
  • 36 Fang H, Oestreich M. Chem. Sci. 2020; 11: 12604
  • 37 Sitte NA, Bursch M, Grimme S, Paradies J. J. Am. Chem. Soc. 2019; 141: 159
  • 38 Köring L, Sitte NA, Bursch M, Grimme S, Paradies J. Chem. Eur. J. 2021; 27: 14179
  • 39 Chardon A, Mohy El Dine T, Legay R, De Paolis M, Rouden J, Blanchet J. Chem. Eur. J. 2017; 23: 2005
  • 40 Chadwick RC, Kardelis V, Lim P, Adronov A. J. Org. Chem. 2014; 79: 7728
  • 41 Huang P.-Q, Lang Q.-W, Wang Y.-R. J. Org. Chem. 2016; 81: 4235
  • 42 Augurusa A, Mehta M, Perez M, Zhu J, Stephan DW. Chem. Commun. 2016; 52: 12195
  • 43 Bosshard HH, Mory R, Schmid M, Zollinger H. Helv. Chim. Acta 1959; 42: 1653
  • 44 Bosshard HH, Zollinger H. Helv. Chim. Acta 1959; 42: 1659
  • 45 Eilingsfeld H, Seefelder M, Weidinger H. Chem. Ber. 1963; 96: 2671
  • 46 Grdinić M, Hahn V. J. Org. Chem. 1965; 30: 2381
  • 47 Massey AG, Park AJ. J. Organomet. Chem. 1964; 2: 245
  • 48 Massey AG, Park AJ. J. Organomet. Chem. 1966; 5: 218
  • 49 Chakraborty D, Rodriguez A, Chen EY.-X. Macromolecules 2003; 36: 5470
  • 50 Nicasio JA, Steinberg S, Inés B, Alcarazo M. Chem. Eur. J. 2013; 19: 11016
  • 51 Naumann D, Butler H, Gnann R. Z. Anorg. Allg. Chem. 1992; 618: 74
  • 52 Greb L, Daniliuc C.-G, Bergander K, Paradies J. Angew. Chem. Int. Ed. 2013; 52: 5876
  • 53 Ullrich M, Lough AJ, Stephan DW. Organometallics 2010; 29: 3647
  • 54 Böhrer H, Trapp N, Himmel D, Schleep M, Krossing I. Dalton Trans. 2015; 44: 7489
  • 55 Mayer U, Gutmann V, Gerger W. Monatsh. Chem. 1975; 106: 1235
  • 56 Gutmann V. Coord. Chem. Rev. 1976; 18: 225
  • 57 Beckett MA, Strickland GC, Holland JR, Sukumar Varma K. Polymer 1996; 37: 4629
  • 58 Beckett MA, Brassington DS, Coles SJ, Hursthouse MB. Inorg. Chem. Commun. 2000; 3: 530
  • 59 Morgan MM, Marwitz AJ. V, Piers WE, Parvez M. Organometallics 2013; 32: 317
  • 60 Hermanek S. Chem. Rev. 1992; 92: 325
  • 61 Wrackmeyer B. Z. Naturforsch., B 2015; 70: 421
  • 62 Lindqvist M, Sarnela N, Sumerin V, Chernichenko K, Leskelä M, Repo T. Dalton Trans. 2012; 41: 4310
  • 63 Longobardi LE, Tang C, Stephan DW. Dalton Trans. 2014; 43: 15723
  • 64 v. Braun J. Ber. Dtsch. Chem. Ges. 1904; 37: 3210
  • 65 Greb L, Tussing S, Schirmer B, Oña-Burgos P, Kaupmees K, Lõkov M, Leito I, Grimme S, Paradies J. Chem. Sci. 2013; 4: 2788
  • 66 Tussing S, Greb L, Tamke S, Schirmer B, Muhle-Goll C, Luy B, Paradies J. Chem. Eur. J. 2015; 21: 8056
  • 67 Tussing S, Kaupmees K, Paradies J. Chem. Eur. J. 2016; 22: 7422
  • 68 Chen D, Klankermayer J. Chem. Commun. 2008; 2130
  • 69 Zhang Z, Du H. Org. Lett. 2015; 17: 6266
  • 70 Kramer DL, Miller JT, Bergeron RJ, Khomutov R, Khomutov A, Porter CW. J. Cell. Physiol. 1993; 155: 399
  • 71 Kaur N, Delcros J.-G, Archer J, Weagraff NZ, Martin B, Phanstiel OIV. J. Med. Chem. 2008; 51: 2551
  • 72 Tsen C, Iltis M, Kaur N, Bayer C, Delcros J.-G, von Kalm L, Phanstiel OIV. J. Med. Chem. 2008; 51: 324
  • 73 Kumar A, Yellepeddi VK, Vangara KK, Strychar KB, Palakurthi S. J. Drug Targeting 2011; 19: 770
  • 74 Hayes CS, Shicora AC, Keough MP, Snook AE, Burns MR, Gilmour SK. Cancer Immunol. Res. 2014; 2: 274
  • 75 Razvi SS, Choudhry H, Moselhy SS, Kumosani TA, Hasan MN, Zamzami MA, Abualnaja KO, Al-Malki AL, Alhosin M, Asami T. Biomed. Pharmacother. 2017; 93: 190
  • 76 Peters MC, Minton A, Phanstiel OIV, Gilmour SK. Med. Sci. 2018; 6: 3
  • 77 Khan A, Gamble LD, Upton DH, Ung C, Yu DM. T, Ehteda A, Pandher R, Mayoh C, Hébert S, Jabado N, Kleinman CL, Burns MR, Norris MD, Haber M, Tsoli M, Ziegler DS. Nat. Commun. 2021; 12: 971
  • 78 Curran WV, Angier RB. J. Org. Chem. 1966; 31: 3867
  • 79 Andrews KG, Faizova R, Denton RM. Nat. Commun. 2017; 8: 15913