Synthesis 2022; 54(05): 1422-1430
DOI: 10.1055/a-1672-2260
paper

Acid-Catalyzed Intramolecular Ring-Opening Reactions of Cyclopropanated Oxabenzonorbornadienes with Carboxylic Acid Nucleophiles

Angel Ho
,
Austin Pounder
,
Samuel Koh
,
Matthew P. Macleod
,
Emily Carlson
,
William Tam
This work was supported by Natural Sciences and Engineering Council of Canada (NSERC; Discovery Grant). A.P. acknowledges NSERC for financial support through the PGS-D Scholarship. S.K. acknowledges NSERC for financial support through the CGS-M Scholarship.


Abstract

The present work demonstrates the ability of carboxylic acid tethered cyclopropanated oxabenzonorbornadienes (CPOBDs) to undergo ring-opening reactions in mild acidic conditions. The optimized reaction conditions involve the use of pTsOH in DCE at 90 °C. Two regioisomers are formed but the reactions are highly regioselective towards type 3 ring-opened products. It was observed that substitution at the C5 and aryl positions of CPOBD significantly hinders the ring-opening reactions leading to decreased yields of ring-opened products, although high regioselectivity for the Type 3 ring-opened products is still maintained. Herein, the first examples of acid-catalyzed intramolecular ring-opening reactions of CPOBD with carboxylic acid nucleophiles are reported.

Supporting Information



Publication History

Received: 22 September 2021

Accepted after revision: 18 October 2021

Accepted Manuscript online:
18 October 2021

Article published online:
22 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Boutin R, Koh S, Tam W. Curr. Org. Synth. 2018; 16: 460
    • 1b Rayabarapu DK, Cheng CH. Acc. Chem. Res. 2007; 40: 971
    • 1c Lautens M, Fagnou K, Hiebert S. Acc. Chem. Res. 2003; 36: 48
    • 1d Pounder A, Ho A, Macleod M, Tam W. Curr. Org. Synth. 2021; 18: 446
    • 1e Kumar SV, Yen A, Lautens A, Guiry PJ. Chem. Soc. Rev. 2021; 50: 3013
    • 2a Sawama Y, Ogata Y, Kawamoto K, Satake H, Shibata K, Monguchi Y, Sajiki H, Kita Y. Adv. Synth. Catal. 2013; 355: 517
    • 2b Sun YW, Xu Q, Shi M. Beilstein J. Org. Chem. 2013; 9: 1969
    • 2c Peng F, Fan B, Shao Z, Pu X, Li P, Zhang H. Synthesis 2008; 3043
    • 2d Shang M, Butler DN, Warrener RN, Margetić D. Tetrahedron Lett. 2013; 54: 5335
    • 2e Villeneuve K, Tam W. J. Am. Chem. Soc. 2006; 128: 3514
    • 3a Shih HT, Shih HH, Cheng CH. Org. Lett. 2001; 3: 811
    • 3b Nishimura T, Kawamoto T, Sasaki K, Tsurumaki E, Hayashi T. J. Am. Chem. Soc. 2007; 129: 1492
    • 3c Fillion E, Trépanier VE, Mercier LG, Remorova AA, Carson RJ. Tetrahedron Lett. 2005; 47: 1091
    • 3d De Lucchi O, Daştan A, Altundaş A, Fabris F, Balci M. Helv. Chim. Acta 2004; 87: 2364
    • 3e Allen A, Le Marquand P, Burton R, Villeneuve K, Tam W. J. Org. Chem. 2007; 72: 7849
    • 4a Lu Z, Zhang H, Yang Z, Ding N, Meng L, Wang J. ACS Catal. 2019; 9: 1457
    • 4b Dengiz C, Calikan R, Balci M. Tetrahedron Lett. 2012; 53: 550
    • 4c Wu X, Chu L, Qing FL. Angew. Chem. Int. Ed. 2013; 52: 2198
    • 4d Guo Z, Shin I, Yoon J. Chem. Commun. 2012; 48: 5956
    • 4e Lee H, Lee BY, Yun J. Org. Lett. 2015; 17: 764
    • 4f Ito S, Itoh T, Nakamura M. Angew. Chem. Int. Ed. 2011; 50: 454
    • 4g Miki Y, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 1498
    • 4h Gong TJ, Yu SH, Li K, Su W, Lu X, Xiao B, Fu Y. Chem. Asian J. 2017; 12: 2884
    • 4i Mannathan S, Cheng CH. Chem. Commun. 2013; 49: 1557
    • 4j Hulcoop DG, Lautens M. Org. Lett. 2007; 9: 1761
    • 4k Zhou Y, Yu L, Chen J, Xu J, He Z, Shen G, Fan B. Org. Lett. 2018; 20: 1291
    • 5a Villeneuve K, Tam W. Organometallics 2006; 25: 843
    • 5b Allen A, Villeneuve K, Cockburn N, Fatila E, Riddell N, Tam W. Eur. J. Org. Chem. 2008; 4178
    • 5c Dey A, Rathi A, Volla CM. R. Asian J. Org. Chem. 2018; 7: 1362
    • 5d Jordan RW, Tam W. Tetrahedron Lett. 2002; 43: 6051
    • 5e Jordan RW, Khoury PR, Goddard JD, Tam W. J. Org. Chem. 2004; 69: 8467
    • 5f Burton RR, Tam W. J. Org. Chem. 2007; 72: 7333
    • 5g Villeneuve K, Jordan RW, Tam W. Synlett 2003; 2123
    • 5h Villeneuve K, Tam W. Angew. Chem. Int. Ed. 2004; 43: 610
    • 5i Cockburn N, Karimi E, Tam W. J. Org. Chem. 2009; 74: 5762
    • 5j Riddell N, Tam W. J. Org. Chem. 2006; 71: 1943
    • 6a Ma F, Chen J, Yang F, Shinde MV, Zhou Y, Fan B. Org. Biomol. Chem. 2017; 15: 2359
    • 6b Lautens M, Fagnou K, Taylor M, Rovis T. J. Organomet. Chem. 2001; 624: 259
    • 6c Tsui GC, Tsoung J, Dougan P, Lautens M. Org. Lett. 2012; 14: 5542
    • 6d Loh CC. J, Fang X, Peters B, Lautens M. Chem. Eur. J. 2015; 21: 13883
    • 6e Zhu J, Tsui GC, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 12353
    • 6f Cheng H, Yang D. J. Org. Chem. 2012; 77: 9756
    • 6g Hill J, Wicks C, Pounder A, Tam W. Tetrahedron Lett. 2019; 60: 150990
    • 6h Koh S, Pounder A, Brown E, Tam W. Eur. J. Org. Chem. 2020; 4558
    • 6i Koh S, Pounder A, Brown E, Tam W. Org. Lett. 2020; 22: 3433
    • 6j Hill J, Tam W. J. Org. Chem. 2019; 84: 8309
    • 6k Diallo AG, Roy D, Gaillard S, Lautens M, Renauld J.-L. Org. Lett. 2020; 22: 2442
    • 6l Yang J, Sekiguchi Y, Yoshikai N. ACS Catal. 2019; 9: 5638
    • 6m Lautens M, Dockendorff C, Fagnou K, Malicki A. Org. Lett. 2002; 4: 1311
    • 6n Feng CC, Nandi M, Sambaiah T, Cheng CH. J. Org. Chem. 1999; 64: 3538
  • 7 Lautens M, Rovis T. Tetrahedron 1999; 55: 8967
  • 8 Madan S, Cheng C. J. Org. Chem. 2006; 71: 8312
  • 9 de Meijere A. Angew. Chem., Int. Ed. Engl. 1979; 18: 809
  • 10 Carlson E, Haner J, McKee M, Tam W. Org. Lett. 2014; 16: 1776
  • 12 Wicks C, Koh S, Pounder A, Carlson E, Tam W. Tetrahedron Lett. 2019; 60: 151228