Subscribe to RSS
DOI: 10.1055/a-1672-2260
Acid-Catalyzed Intramolecular Ring-Opening Reactions of Cyclopropanated Oxabenzonorbornadienes with Carboxylic Acid Nucleophiles
This work was supported by Natural Sciences and Engineering Council of Canada (NSERC; Discovery Grant). A.P. acknowledges NSERC for financial support through the PGS-D Scholarship. S.K. acknowledges NSERC for financial support through the CGS-M Scholarship.
Abstract
The present work demonstrates the ability of carboxylic acid tethered cyclopropanated oxabenzonorbornadienes (CPOBDs) to undergo ring-opening reactions in mild acidic conditions. The optimized reaction conditions involve the use of pTsOH in DCE at 90 °C. Two regioisomers are formed but the reactions are highly regioselective towards type 3 ring-opened products. It was observed that substitution at the C5 and aryl positions of CPOBD significantly hinders the ring-opening reactions leading to decreased yields of ring-opened products, although high regioselectivity for the Type 3 ring-opened products is still maintained. Herein, the first examples of acid-catalyzed intramolecular ring-opening reactions of CPOBD with carboxylic acid nucleophiles are reported.
Key words
oxabenzonorbornadiene - cyclopropanated oxabenzonorbornadiene - intramolecular - nucleophilic ring-opening - acid-catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1672-2260.
- Supporting Information
Publication History
Received: 22 September 2021
Accepted after revision: 18 October 2021
Accepted Manuscript online:
18 October 2021
Article published online:
22 November 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Boutin R, Koh S, Tam W. Curr. Org. Synth. 2018; 16: 460
- 1b Rayabarapu DK, Cheng CH. Acc. Chem. Res. 2007; 40: 971
- 1c Lautens M, Fagnou K, Hiebert S. Acc. Chem. Res. 2003; 36: 48
- 1d Pounder A, Ho A, Macleod M, Tam W. Curr. Org. Synth. 2021; 18: 446
- 1e Kumar SV, Yen A, Lautens A, Guiry PJ. Chem. Soc. Rev. 2021; 50: 3013
- 2a Sawama Y, Ogata Y, Kawamoto K, Satake H, Shibata K, Monguchi Y, Sajiki H, Kita Y. Adv. Synth. Catal. 2013; 355: 517
- 2b Sun YW, Xu Q, Shi M. Beilstein J. Org. Chem. 2013; 9: 1969
- 2c Peng F, Fan B, Shao Z, Pu X, Li P, Zhang H. Synthesis 2008; 3043
- 2d Shang M, Butler DN, Warrener RN, Margetić D. Tetrahedron Lett. 2013; 54: 5335
- 2e Villeneuve K, Tam W. J. Am. Chem. Soc. 2006; 128: 3514
- 3a Shih HT, Shih HH, Cheng CH. Org. Lett. 2001; 3: 811
- 3b Nishimura T, Kawamoto T, Sasaki K, Tsurumaki E, Hayashi T. J. Am. Chem. Soc. 2007; 129: 1492
- 3c Fillion E, Trépanier VE, Mercier LG, Remorova AA, Carson RJ. Tetrahedron Lett. 2005; 47: 1091
- 3d De Lucchi O, Daştan A, Altundaş A, Fabris F, Balci M. Helv. Chim. Acta 2004; 87: 2364
- 3e Allen A, Le Marquand P, Burton R, Villeneuve K, Tam W. J. Org. Chem. 2007; 72: 7849
- 4a Lu Z, Zhang H, Yang Z, Ding N, Meng L, Wang J. ACS Catal. 2019; 9: 1457
- 4b Dengiz C, Calikan R, Balci M. Tetrahedron Lett. 2012; 53: 550
- 4c Wu X, Chu L, Qing FL. Angew. Chem. Int. Ed. 2013; 52: 2198
- 4d Guo Z, Shin I, Yoon J. Chem. Commun. 2012; 48: 5956
- 4e Lee H, Lee BY, Yun J. Org. Lett. 2015; 17: 764
- 4f Ito S, Itoh T, Nakamura M. Angew. Chem. Int. Ed. 2011; 50: 454
- 4g Miki Y, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 1498
- 4h Gong TJ, Yu SH, Li K, Su W, Lu X, Xiao B, Fu Y. Chem. Asian J. 2017; 12: 2884
- 4i Mannathan S, Cheng CH. Chem. Commun. 2013; 49: 1557
- 4j Hulcoop DG, Lautens M. Org. Lett. 2007; 9: 1761
- 4k Zhou Y, Yu L, Chen J, Xu J, He Z, Shen G, Fan B. Org. Lett. 2018; 20: 1291
- 5a Villeneuve K, Tam W. Organometallics 2006; 25: 843
- 5b Allen A, Villeneuve K, Cockburn N, Fatila E, Riddell N, Tam W. Eur. J. Org. Chem. 2008; 4178
- 5c Dey A, Rathi A, Volla CM. R. Asian J. Org. Chem. 2018; 7: 1362
- 5d Jordan RW, Tam W. Tetrahedron Lett. 2002; 43: 6051
- 5e Jordan RW, Khoury PR, Goddard JD, Tam W. J. Org. Chem. 2004; 69: 8467
- 5f Burton RR, Tam W. J. Org. Chem. 2007; 72: 7333
- 5g Villeneuve K, Jordan RW, Tam W. Synlett 2003; 2123
- 5h Villeneuve K, Tam W. Angew. Chem. Int. Ed. 2004; 43: 610
- 5i Cockburn N, Karimi E, Tam W. J. Org. Chem. 2009; 74: 5762
- 5j Riddell N, Tam W. J. Org. Chem. 2006; 71: 1943
- 6a Ma F, Chen J, Yang F, Shinde MV, Zhou Y, Fan B. Org. Biomol. Chem. 2017; 15: 2359
- 6b Lautens M, Fagnou K, Taylor M, Rovis T. J. Organomet. Chem. 2001; 624: 259
- 6c Tsui GC, Tsoung J, Dougan P, Lautens M. Org. Lett. 2012; 14: 5542
- 6d Loh CC. J, Fang X, Peters B, Lautens M. Chem. Eur. J. 2015; 21: 13883
- 6e Zhu J, Tsui GC, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 12353
- 6f Cheng H, Yang D. J. Org. Chem. 2012; 77: 9756
- 6g Hill J, Wicks C, Pounder A, Tam W. Tetrahedron Lett. 2019; 60: 150990
- 6h Koh S, Pounder A, Brown E, Tam W. Eur. J. Org. Chem. 2020; 4558
- 6i Koh S, Pounder A, Brown E, Tam W. Org. Lett. 2020; 22: 3433
- 6j Hill J, Tam W. J. Org. Chem. 2019; 84: 8309
- 6k Diallo AG, Roy D, Gaillard S, Lautens M, Renauld J.-L. Org. Lett. 2020; 22: 2442
- 6l Yang J, Sekiguchi Y, Yoshikai N. ACS Catal. 2019; 9: 5638
- 6m Lautens M, Dockendorff C, Fagnou K, Malicki A. Org. Lett. 2002; 4: 1311
- 6n Feng CC, Nandi M, Sambaiah T, Cheng CH. J. Org. Chem. 1999; 64: 3538
- 7 Lautens M, Rovis T. Tetrahedron 1999; 55: 8967
- 8 Madan S, Cheng C. J. Org. Chem. 2006; 71: 8312
- 9 de Meijere A. Angew. Chem., Int. Ed. Engl. 1979; 18: 809
- 10 Carlson E, Haner J, McKee M, Tam W. Org. Lett. 2014; 16: 1776
- 11a Tigchelaar A, Haner J, Carlson E, Tam W. Synlett 2014; 25: 2355
- 11b Carlson E, Hong D, Tam W. Synthesis 2016; 48: 4253
- 11c Carlson E, Boutin R, Tam W. Tetrahedron 2018; 74: 5510
- 12 Wicks C, Koh S, Pounder A, Carlson E, Tam W. Tetrahedron Lett. 2019; 60: 151228