Synthesis 2022; 54(06): 1661-1669
DOI: 10.1055/a-1671-6602
paper

A Concise Copper-Catalyzed Oxytrifluoromethylation of Allyl Alcohols

Longhui Chen
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
,
Zequn Yang
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
,
Qi Sun
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
,
Minjie Guo
b   Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China
,
Xintong Feng
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
,
Xiangyang Tang
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
,
Guangwei Wang
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
› Institutsangaben
We are grateful for the financial support from the Natural Science Foundation of Tianjin (19JCYBJC20200) and Tianjin University for support of this research.


In deep memory of Dr. Ei-ichi Negishi.

Abstract

An efficient oxytrifluoromethylation of 1-aryl-substituted allyl alcohols has been developed using Togni’s reagent II as a trifluoromethylation reagent and copper(I) chloride as a catalyst. This reaction proceeded through a one-pot process of trifluoromethylation followed by nucleophilic attack of the vicinal hydroxyl group. This strategy features good diastereoselectivity and broad substrate scope, which provides a facile access to various 2-aryl-3-(2,2,2-trifluoroethyl)oxiranes.

Supporting Information



Publikationsverlauf

Eingereicht: 18. September 2021

Angenommen nach Revision: 18. Oktober 2021

Accepted Manuscript online:
18. Oktober 2021

Artikel online veröffentlicht:
30. November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1b Jeschke P. ChemBioChem 2004; 5: 570
    • 1c Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
    • 1d O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1e Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 2 Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer RJ, Pleven E, Scheiner J. Nature 1957; 179: 663

    • For selected reviews, see:
    • 3a Ma J.-A, Cahard D. Chem. Rev. 2004; 104: 6119
    • 3b Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
    • 3c Ma J.-A, Cahard D. J. Fluorine Chem. 2007; 128: 975
    • 3d Feruya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 3e Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 3f Liu H, Gu Z, Jiang X. Adv. Synth. Catal. 2013; 355: 617

      For selected examples, see:
    • 4a Eisenberger P, Gischig S, Togni A. Chem. Eur. J. 2006; 12: 2579
    • 4b Niedermann K, Welch JM, Koller R, Cvengroš J, Santschi N, Battaglia P, Togni A. Tetrahedron 2010; 66: 5753
    • 4c Pair E, Monteriro N, Bouyssi D, Baudoin O. Angew. Chem. Int. Ed. 2013; 52: 5346
    • 4d Matoušek V, Pietrasiak E, Schwenk R, Togni A. J. Org. Chem. 2013; 78: 6763
    • 4e Andries-Ulmer A, Brunner C, Rehbein J, Gulder T. J. Am. Chem. Soc. 2018; 140: 13034
    • 4f Li C, Xue L, Zhou J, Zhao Y, Han G, Hou J, Song Y, Liu Y. Org. Lett. 2020; 22: 3291

      For selected reviews, see:
    • 5a Chen P, Liu G. Synthesis 2013; 45: 2919
    • 5b Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
    • 5c Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
    • 5d Egami H, Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294

    • For selected examples, see:
    • 5e Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
    • 5f Koller R, Stanek K, Stolz D, Aardoom R, Niedermann K, Togni A. Angew. Chem. Int. Ed. 2009; 48: 4332
    • 5g Niedermann K, Früh N, Vinogradova E, Wiehn MS, Moreno A, Togni A. Angew. Chem. Int. Ed. 2011; 50: 1059
    • 5h Früh N, Togni A. Angew. Chem. Int. Ed. 2014; 53: 10813
    • 5i Katayev D, Matoušek V, Koller R, Togni A. Org. Lett. 2015; 17: 5898
    • 5j Kalim J, Duhail T, Le T.-N, Vanthuyne N, Anselmi E, Togni A, Magnier E. Chem. Sci. 2019; 10: 10516

      For selected examples, see:
    • 6a Wang X, Zhao S, Liu J, Zhu D, Guo M, Tang X, Wang G. Org. Lett. 2017; 19: 4187
    • 6b Li X.-T, Gu Q.-S, Dong X.-Y, Meng X, Liu X.-Y. Angew. Chem. Int. Ed. 2018; 57: 7668
    • 6c He F.-S, Chen X, Yang S, Zhang J, Xia H, Wu J. Org. Chem. Front. 2018; 5: 2437
    • 6d Shu C, Mega RS, Andreassen BJ, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 15430
    • 6e Gao C, Li B, Geng X, Zhou Q, Zhang X, Fan X. Green Chem. 2019; 21: 5113
    • 6f Wang J, Sun K, Chen X, Chen T, Liu Y, Qu L, Zhao Y, Yu B. Org. Lett. 2019; 21: 1863
    • 6g Mou X.-Q, Rong F.-M, Zhang H, Chen G, He G. Org. Lett. 2019; 21: 4657
    • 6h Wang L, Qi C, Cheng R, Liu H, Xiong W, Jiang H. Org. Lett. 2019; 21: 7386
    • 6i Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
    • 6j Meng F, Fang Q, Yuan W, Xu N, Cao S, Chun J, Li J, Zhang H, Zhu Y. Org. Chem. Front. 2020; 7: 1358
    • 7a Shen Y, Liao Q, Qiu W. J. Chem. Soc., Chem. Commun. 1988; 1309
    • 7b Shimizu M, Fujimoto T, Minezaki H, Hata T, Hiyama T. J. Am. Chem. Soc. 2001; 123: 6947
    • 7c Shimizu M, Fujimoto T, Liu X, Minezaki H, Hata T, Hiyama T. Tetrahedron 2003; 59: 9811
    • 7d Yamazaki T, Ichige T, Kitazume T. Org. Lett. 2004; 6: 4073
    • 7e Obinata R, Kawasaki-Takasuka T, Yamazaki T. Org. Lett. 2010; 12: 4316
  • 8 Fuchikami T, Shibata Y, Urata H. Chem. Lett. 1987; 16: 521
  • 9 Kim E, Choi S, Kim H, Cho EJ. Chem. Eur. J. 2013; 19: 6209
  • 10 Zhu R, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
    • 11a Chen H, Wang X, Guo M, Zhao W, Tang X, Wang G. Org. Chem. Front. 2017; 4: 2403
    • 11b Wang X, Li M, Guo M, Tang X, Wang G. Adv. Synth. Catal. 2018; 360: 2151
    • 11c Wang X, Liu J, Yu Z, Guo M, Tang X, Wang G. Org. Lett. 2018; 20: 6516
    • 11d Yuan F, Zhou S, Yang Y, Guo M, Tang X, Wang G. Org. Chem. Front. 2018; 5: 3306
    • 11e Yang Y, Yuan F, Ren X, Wang G, Zhao W, Tang X, Guo M. J. Org. Chem. 2019; 84: 4507
    • 11f Wang L, Chen H, Zhao W, Wang G. Synlett 2021; 32: 1029
  • 12 The cis- and trans-diastereomers were determined by comparison with reported spectra in ref. 10.
  • 13 Chen Z.-M, Bai W, Wang S.-H, Yang B.-M, Tu Y.-Q, Zhang F.-M. Angew. Chem. Int. Ed. 2013; 52: 9781
    • 14a Smith DM, Golding BT, Radom L. J. Am. Chem. Soc. 2001; 123: 1664
    • 14b Kinoshita K, Kawata M, Ogura K.-i, Yamasaki A, Watanabe T, Komoto N, Hieda N, Yamanishi M, Tobimatsu T, Toraya T. Biochemistry 2008; 47: 3162
    • 15a Huang L, Qi J, Wu X, Wu W, Jiang H. Chem. Eur. J. 2013; 19: 15462
    • 15b Vellakkaran M, Andappan MM. S, Kommu N. Green Chem. 2014; 16: 2788
    • 15c Liao J, Zhang Z, Tang X, Wu W, Guo W, Jiang H. J. Org. Chem. 2015; 80: 8903
  • 16 Hatcher LQ, Karlin KD. In Advances in Inorganic Chemistry, Vol. 58. van Eldik R, Reedijk J. Elsevier/Academic Press; Amsterdam: 2006: 131-184
  • 17 Spoehrle SS. M. S, West TH, Taylor JE, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2017; 139: 11895
  • 18 Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
  • 19 Sun K, Li G, Guo S, Zhang Z, Zhang G. Org. Biomol. Chem. 2021; 19: 375
  • 20 Yi N, Zhang H, Xu C, Deng W, Wang R, Peng D, Zeng Z, Xiang J. Org. Lett. 2016; 18: 1780