Synlett 2022; 33(12): 1194-1198 DOI: 10.1055/a-1665-9220
cluster
Organic Photoredox Catalysis in Synthesis – Honoring Prof. Shunichi Fukuzumi’s 70th Birthday
Red-Light-Induced N ,N ′-Dipropyl-1,13-dimethoxyquinacridinium-Catalyzed [3+2] Cycloaddition of Cyclopropylamines with Alkenes or Alkynes
Savannah M. Stull
a
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
,
Liangyong Mei
b
Department of Chemistry, Colgate University, 13 Oak Dr, Hamilton, NY 13346, USA
,
a
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
› Author Affiliations We are grateful to the University of Arizona and the ACS Petroleum Research Fund (grant no. 59631-DNI3) for financially supporting this work. All NMR data were collected in the NMR facility of the Department of Chemistry and Biochemistry at the University of Arizona, and we thank Dr. Jixun Dai for his help. The purchase of the Bruker NEO 500 MHz spectrometer was supported by the National Science Foundation (Grant No. 1920234) and by the University of Arizona.
Abstract
A red-light-mediated [3+2] annulation of cyclopropylamines with akenes or alkynes in the presence of N ,N ′-dipropyl-1,13-dimethoxyquinacridinium is reported. An array of cyclopentane or cyclopentene derivatives with diverse functional groups have been obtained in moderate to excellent yields under mild conditions.
Key words
photoredox catalysis -
[3+2] cycloaddition -
cyclopropylamines -
alkenes -
alkynes -
dipropyldimethoxyquinacridinium
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1665-9220. Included are general information, substrate synthesis and characterization, mechanistic investigation, experimental procedures, as well as NMR spectroscopy data.
Supporting Information
Publication History
Received: 26 August 2021
Accepted after revision: 10 October 2021
Accepted Manuscript online: 10 October 2021
Article published online: 12 November 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Babu YS,
Chand P,
Bantia S,
Kotian P,
Dehghani A,
El-Kattan Y,
Lin TH,
Hutchison TL,
Elliott AJ,
Parker CD,
Ananth SL,
Horn LL,
Laver GW,
Montgomery JA.
J. Med. Chem. 2000; 43: 3482
1b
Jia F,
Hong J,
Sun P.-H,
Chen J.-X,
Chen W.-M.
Synth. Commun. 2013; 43: 2641
2a
Trost BM,
Kuo GH,
Benneche T.
J. Am. Chem. Soc. 1988; 110: 621
2b
Bestmann HJ,
Roth D.
Synlett 1990; 751
2c
Boyer SJ,
Leahy JW.
J. Org. Chem. 1997; 62: 3976
3a
Corey EJ,
Schaaf TK,
Huber W,
Koelliker U,
Weinshenker NM.
J. Am. Chem. Soc. 1970; 92: 397
3b
Das S,
Chandrasekhar S,
Yadav JS,
Grée R.
Chem. Rev. 2007; 107: 3286
4a
Zhou Q,
Snider BB.
Org. Lett. 2008; 10: 1401
4b
Nistanaki SK,
Boralsky LA,
Pan RD,
Nelson HM.
Angew. Chem. Int. Ed. 2019; 58: 1724
4c
Liang Y,
Li Q,
Wei M,
Chen C,
Sun W,
Gu L,
Zhu H,
Zhang Y.
Bioorg. Chem. 2020; 99: 103760
5a
Shibata T.
Adv. Synth. Catal. 2006; 348: 2328
5b
Haberman J.
Curr. Org. Chem. 2010; 14: 1139
6a
Vaidya T,
Eisenberg R,
Frontier AJ.
ChemCatChem 2011; 3: 1531
6b
Fradette RJ,
Kang M,
West FG.
Angew. Chem. Int. Ed. 2017; 56: 6335
7a
Trost BM.
Angew. Chem., Int. Ed. Engl. 1986; 25: 1
7b
Zhang C,
Lu X.
J. Org. Chem. 1995; 60: 2906
7c
Mei L.-y,
Wei Y,
Xu Q,
Shi M.
Organometallics 2012; 31: 7591
7d
Gicquel M,
Zhang Y,
Aillard P,
Retailleau P,
Voituriez A,
Marinetti A.
Angew. Chem. Int. Ed. 2015; 54: 5470
7e
Kuang Y,
Ning Y,
Zhu J,
Wang Y.
Org. Lett. 2018; 20: 2693
8
Kurteva VB,
Afonso CA. M.
Chem. Rev. 2009; 109: 6809
9a
Boyce GR,
Johnson JS.
Angew. Chem. Int. Ed. 2010; 49: 8930
9b
Boyce GR,
Liu S,
Johnson JS.
Org. Lett. 2012; 14: 652
10a
Ha JD,
Lee J,
Blackstock SC,
Cha JK.
J. Org. Chem. 1998; 63: 8510
10b
Lee HB,
Sung MJ,
Blackstock SC,
Cha JK.
J. Am. Chem. Soc. 2001; 123: 11322
10c
Maity S,
Zhu M,
Shinabery RS,
Zheng N.
Angew. Chem. Int. Ed. 2012; 51: 222
10d
Nguyen TH,
Morris SA,
Zheng N.
Adv. Synth. Catal. 2014; 356: 2831
10e
Nguyen TH,
Maity S,
Zheng N.
Beilstein J. Org. Chem. 2014; 10: 975
10f
Muriel B,
Gagnebin A,
Waser J.
Chem. Sci. 2019; 10: 10716
10g
Yin Y,
Li Y,
Gonçalves TP,
Zhan Q,
Wang G,
Zhao X,
Qiao B,
Huang K.-W,
Jiang Z.
J. Am. Chem. Soc. 2020; 142: 19451
10h
White DH,
Noble A,
Booker-Milburn KI,
Aggarwal VK.
Org. Lett. 2021; 23: 3038
11a
Prier CK,
Rankic DA,
MacMillan DW. C.
Chem. Rev. 2013; 113: 5322
11b
Romero NA,
Nicewicz DA.
Chem. Rev. 2016; 116: 10075
11c
Skubi KL,
Blum TR,
Yoon TP.
Chem. Rev. 2016; 116: 10035
11d
Shang TY,
Lu LH,
Cao Z,
Liu Y,
He WM,
Yu B.
Chem. Commun. 2019; 55: 5408
11e
Vega-Peñaloza A,
Mateos J,
Companyó X,
Escudero-Casao M,
Dell’Amico L.
Angew. Chem. Int. Ed. 2021; 60: 1082
12a
Ravetz BD,
Pun AB,
Churchill EM,
Congreve DN,
Rovis T,
Campos LM.
Nature 2019; 565: 343
12b
Ravetz BD,
Tay NE. S,
Joe CL,
Sezen-Edmonds M,
Schmidt MA,
Tan Y,
Janey JM,
Eastgate MD,
Rovis T.
ACS Cent. Sci. 2020; 6: 2053
13a
Mei L,
Veleta JM,
Gianetti TL.
J. Am. Chem. Soc. 2020; 142: 12056
13b
Mei L,
Gianetti T.
Synlett 2021; 32: 337
14
Mei L,
Moutet J,
Stull SM,
Gianetti TL.
J. Org. Chem. 2021; 86: 10640
15a
Crutchley RJ,
Lever AB. P.
J. Am. Chem. Soc. 1980; 102: 7128
15b
Rillema DP,
Allen G,
Meyer TJ,
Conrad D.
Inorg. Chem. 1983; 22: 1617
16
Roth HG,
Romero NA,
Nicewicz DA.
Synlett 2016; 27: 714
17
Red-Light-Induced n Pr-DMQA+ -Catalyzed [3+2] Cycloaddition of N -Cyclopropylanilines 1 with Alkenes 2; General Procedure
In a N2 glove box, an oven-dried (overnight) Schlenk tube containing a stirring bar was charged with the appropriate substrate 1 (0.2 mmol, 1.0 equiv) and alkene 2 (1.0 mmol, 1.2 equiv). This was followed by the addition of [n Pr-DMQA+ ][BF4
– ] (1.0 mg, 0.002 mmol, 1.0 mol%) in degassed MeNO2 (1 mL), transferred from a stock solution of the catalyst (10.0 mg) in degassed MeNO2 (10 mL). The Schlenk tube was then sealed and removed from the glove box, and the solution was stirred at rt under red LED (λmax = 640 nm) irradiation until the reaction was complete. The mixture was then concentrated under reduced pressure on a rotary evaporator, and the crude product was purified by flash chromatography (FC) [silica gel, hexanes–Et2 O or EtOAc (200:1 to 6:1)].
trans -N -(2-Phenylcyclopentyl)aniline (3a-I )
10c
Colorless oil; yield: 20 mg (42%). Rf
= 0.3 (hexanes–EtOAc, 20:1). FC: hexanes–Et2 O (99:1). 1 H NMR (500 MHz, CDCl3 ): δ = 7.31 (dd, J = 8.0, 8.0 Hz, 2 H, ArH), 7.25–7.21 (m, 3 H, ArH), 7.12 (dd, J = 8.0, 8.0 Hz, 2 H, ArH), 6.65 (dd, J = 8.0, 8.0 Hz, 1 H, ArH), 6.48 (d, J = 8.0 Hz, 2 H, ArH), 4.01 (dd, J = 12.0, 6.0 Hz, 1 H, CH), 3.46 (dd, J = 15.0, 7.5 Hz, 1 H, CH), 3.37 (bs, 1 H, NH), 2.22–2.07 (m, 3 H, CH2 ), 2.02–1.94 (m, 1 H, CH2 ), 1.89–1.76 (m, 2 H, CH2 ). 13 C NMR (126 MHz, CDCl3 ): δ = 147.91, 140.84, 129.18, 128.77, 128.43, 126.59, 117.01, 113.32, 57.57, 48.15, 32.01, 28.94, 22.19.
cis -N -(2-Phenylcyclopentyl)aniline (3a-II )
10c
Colorless oil; yield: 2 mg, 46%; Rf
= 0.2 (hexanes–EtOAc, 20:1). FC: hexanes–Et2 O (99:1). 1 H NMR (500 MHz, CDCl3 ): δ = 7.34–7.28 (m, 4 H, ArH), 7.22 (dd, J = 7.5, 7.5 Hz, 1 H, ArH), 7.13 (dd, J = 7.5, 7.5 Hz, 2 H, ArH), 6.67 (dd, J = 7.5, 7.5 Hz, 1 H, ArH), 6.55 (d, J = 7.5 Hz, 2 H, ArH), 3.80 (bs, 1 H, NH), 3.80 (dd, J = 13.0, 7.0 Hz, 1 H, CH), 2.93 (dd, J = 17.0, 8.0 Hz, 1 H, CH), 2.38 (ddd, J = 21.0, 14.5, 7.5 Hz, 1 H, CH2 ), 2.26–2.19 (m, 1 H, CH2 ), 1.94–1.82 (m, 2 H, CH2 ), 1.81–1.75 (m, 1 H, CH2 ), 1.66–1.58 (m, 1 H, CH2 ). 13 C NMR (126 MHz, CDCl3 ): δ = 148.16, 143.83, 129.25, 128.69, 127.48, 126.54, 117.19, 113.47, 61.58, 53.27, 33.59, 33.55, 23.46.