CC BY 4.0 · Synthesis 2022; 54(03): 517-534
DOI: 10.1055/a-1657-2634
review

The Rise of Manganese-Catalyzed Reduction Reactions

a   Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34–36, 45470 Mülheim an der Ruhr, Germany
b   Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
,
a   Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34–36, 45470 Mülheim an der Ruhr, Germany
c   Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
› Author Affiliations
We gratefully acknowledge the Max-Planck-Gesellschaft (Max Planck Society) for financial support.


Abstract

Recent developments in manganese-catalyzed reducing transformations—hydrosilylation, hydroboration, hydrogenation, and transfer hydrogenation—are reviewed herein. Over the past half a decade (i.e., 2016 to the present), more than 115 research publications have been reported in these fields. Novel organometallic compounds and new reduction transformations have been discovered and further developed. Significant challenges that had historically acted as barriers for the use of manganese catalysts in reduction reactions are slowly being broken down. This review will hopefully assist in developing this research area, by presenting a clear and concise overview of the catalyst structures and substrate transformations published so far.

1 Introduction

2 Hydrosilylation

3 Hydroboration

4 Hydrogenation

5 Transfer Hydrogenation

6 Conclusion and Perspective



Publication History

Received: 17 August 2021

Accepted after revision: 09 September 2021

Accepted Manuscript online:
29 September 2021

Article published online:
24 November 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Haynes WM. CRC Handbook of Chemistry and Physics, 97th ed. CRC Press; Boca Raton, FL: 2016
  • 2 U.S. Geological Survey Publications; https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-manganese.pdf Last accessed: 17/11/2021.
  • 3 Cannon, W. F. In Fact Sheet; U.S. Geological Survey: Reston, VA, 2014, p. 2; http://pubs.er.usgs.gov/publication/fs20143087 DOI: 10.3133/fs20143087.
  • 4 Kanady JS, Tsui EY, Day MW, Agapie T. Science 2011; 333: 733
    • 5a Saisaha P, de Boer JW, Browne WR. Chem. Soc. Rev. 2013; 42: 2059
    • 5b Miao L, Wang JL, Zhang PY. Appl. Surf. Sci. 2019; 466: 441
    • 6a Snider BB. Chem. Rev. 1996; 96: 339
    • 6b Davies DT, Kapur N, Parsons AF. Tetrahedron 2000; 56: 3941
    • 7a Liu W, Ackermann L. ACS Catal. 2016; 6: 3743
    • 7b Cano R, Mackey K, McGlacken GP. Catal. Sci. Technol. 2018; 8: 1251
    • 7c Hu Y, Zhou B, Wang C. Acc. Chem. Res. 2018; 51: 816
    • 8a Valyaev DA, Lavigne G, Lugan N. Coord. Chem. Rev. 2016; 308: 191
    • 8b Carney JR, Dillon BR, Thomas SP. Eur. J. Org. Chem. 2016; 3912
    • 8c Jamatia R, Mondal A, Srimani D. Adv. Synth. Catal. 2021; 363: 2969
  • 9 Kuninobu Y, Sueki S, Kaplaneris N, Ackermann L. In Catalysis with Earth-Abundant Elements, Chap. 6 . Schneider U, Thomas S. Royal Society of Chemistry; Cambridge: 2020: 139-230
  • 10 Olah GA. Angew. Chem. Int. Ed. 2005; 44: 2636
  • 11 Suzuki A. J. Organomet. Chem. 1999; 576: 147
    • 12a Khusnutdinova JR, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12236
    • 12b Weber S, Kirchner K. In Metal–Ligand Co-operativity: Catalysis and the Pincer-Metal Platform . van Koten G, Kirchner K, Moret M.-E. Springer; Cham (Switzerland): 2020: 227-261
    • 12c Chatterjee B, Chang W.-C, Jena S, Werlé C. ACS Catal. 2020; 14024
    • 12d Chatterjee B, Chang WC, Werlé C. ChemCatChem 2021; 13: 1659
  • 13 Multiple mini-reviews focusing on aspects discussed within the larger field of manganese-catalyzed reductions are present in the literature; however, only the large ones, most relevant to this piece of work, have been mentioned and cited in the introduction, i.e., refs 14–20.
  • 14 Garbe M, Junge K, Beller M. Eur. J. Org. Chem. 2017; 4344
  • 15 Mukherjee A, Milstein D. ACS Catal. 2018; 8: 11435
    • 16a Kallmeier F, Kempe R. Angew. Chem. Int. Ed. 2018; 57: 46
    • 16b Gorgas N, Kirchner K. Acc. Chem. Res. 2018; 51: 1558
    • 16c Alig L, Fritz M, Schneider S. Chem. Rev. 2019; 119: 2681
  • 17 Maji B, Barman MK. Synthesis 2017; 49: 3377
  • 18 Yang X, Wang C. Chem. Asian J. 2018; 13: 2307
  • 19 Azouzi K, Valyaev DA, Bastin S, Sortais J.-B. Curr. Opin. Green Sustain. Chem. 2021; 31
  • 20 Wang Y, Wang M, Li Y, Liu Q. Chem 2021; 7: 1180
  • 21 Pratt SL, Faltynek RA. J. Organomet. Chem. 1983; 258: C5
  • 22 Hilal HS, Abu-Eid M, Al-Subu M, Khalaf S. J. Mol. Catal. 1987; 39: 1
    • 23a Mao Z, Gregg BT, Cutler AR. J. Am. Chem. Soc. 1995; 117: 10139
    • 23b DiBiase Cavanaugh M, Gregg BT, Cutler AR. Organometallics 1996; 15: 2764
  • 24 Chidara VK, Du GD. Organometallics 2013; 32: 5034
    • 25a Zheng J, Elangovan S, Valyaev DA, Brousses R, César V, Sortais J.-B, Darcel C, Lugan N, Lavigne G. Adv. Synth. Catal. 2014; 356: 1093
    • 25b Valyaev DA, Wei D, Elangovan S, Cavailles M, Dorcet V, Sortais JB, Darcel C, Lugan N. Organometallics 2016; 35: 4090
  • 26 Magnus P, Waring MJ, Scott DA. Tetrahedron Lett. 2000; 41: 9731
    • 27a Zheng J, Chevance S, Darcel C, Sortais JB. Chem. Commun. 2013; 49: 10010
    • 27b Wei D, Buhaibeh R, Canac Y, Sortais JB. Chem. Commun. 2020; 56: 11617
  • 28 Igarashi M, Mizuno R, Fuchikami T. Tetrahedron Lett. 2001; 42: 2149
    • 29a Jetz W, Simons P, Thompson J, Graham W. Inorg. Chem. 1966; 5: 2217
    • 29b Aylett B, Campbell J. Inorg. Nucl. Chem. Lett. 1967; 3: 137
    • 29c Berry AD, Macdiarm AG. Inorg. Nucl. Chem. Lett. 1969; 5: 601
  • 30 Dong J, Yuan XA, Yan Z, Mu L, Ma J, Zhu C, Xie J. Nat. Chem. 2021; 13: 182
    • 31a Mukhopadhyay TK, Flores M, Groy TL, Trovitch RJ. J. Am. Chem. Soc. 2014; 136: 882
    • 31b Trovitch RJ. Acc. Chem. Res. 2017; 50: 2842
  • 32 Pinto M, Friaes S, Franco F, Lloret-Fillol J, Royo B. ChemCatChem 2018; 10: 2734
  • 33 Antico E, Schlichter P, Werlé C, Leitner W. JACS Au 2021; 1: 742
  • 34 Obradors C, Martinez RM, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 4962
  • 35 Docherty JH, Peng J, Dominey AP, Thomas SP. Nat. Chem. 2017; 9: 595
  • 36 Carney JR, Dillon BR, Campbell L, Thomas SP. Angew. Chem. Int. Ed. 2018; 57: 10620
  • 37 Mukhopadhyay TK, Flores M, Groy TL, Trovitch RJ. Chem. Sci. 2018; 9: 7673
  • 38 Yang X, Wang C. Chin. J. Chem. 2018; 36: 1047
  • 39 Yang X, Wang C. Angew. Chem. Int. Ed. 2018; 57: 923
  • 40 Liang H, Ji YX, Wang RH, Zhang ZH, Zhang B. Org. Lett. 2019; 21: 2750
  • 41 Son SU, Paik SJ, Chung YK. J. Mol. Catal. A: Chem. 2000; 151: 87
  • 42 Mukhopadhyay TK, Rock CL, Hong M, Ashley DC, Groy TL, Baik MH, Trovitch RJ. J. Am. Chem. Soc. 2017; 139: 4901
  • 43 Ghosh C, Mukhopadhyay TK, Flores M, Groy TL, Trovitch RJ. Inorg. Chem. 2015; 54: 10398
  • 44 Mukhopadhyay TK, Ghosh C, Flores M, Groy TL, Trovitch RJ. Organometallics 2017; 36: 3477
  • 45 Ma X, Zuo Z, Liu G, Huang Z. ACS Omega 2017; 2: 4688
  • 46 Yempally V, Shahbaz A, Fan WY, Madrahimov ST, Bengali AA. Inorganics 2020; 8: 61
  • 47 Saito K, Ito T, Arata S, Sunada Y. ChemCatChem 2020; 13: 1152
  • 48 Martínez-Ferraté O, Chatterjee B, Werlé C, Leitner W. Catal. Sci. Technol. 2019; 9: 6370
    • 49a Behera RR, Ghosh R, Panda S, Khamari S, Bagh B. Org. Lett. 2020; 22: 3642
    • 49b Sousa SC. A, Realista S, Royo B. Adv. Synth. Catal. 2020; 362: 2437
  • 50 Kelly CM, McDonald R, Sydora OL, Stradiotto M, Turculet L. Angew. Chem. Int. Ed. 2017; 56: 15901
  • 51 Igarashi M, Fuchikami T. Tetrahedron Lett. 2001; 42: 1945
  • 52 Arias-Ugarte R, Sharma HK, Morris AL, Pannell KH. J. Am. Chem. Soc. 2012; 134: 848
  • 53 Ganguli K, Mandal A, Sarkar B, Kundu S. Tetrahedron 2020; 76: 131439
  • 54 Bertini F, Glatz M, Stoger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L. ACS Catal. 2019; 9: 632
  • 55 González T, García JJ. Polyhedron 2021; 203: 115242
  • 56 Zhang G, Zeng H, Wu J, Yin Z, Zheng S, Fettinger JC. Angew. Chem. Int. Ed. 2016; 55: 14369
  • 57 Vijjamarri S, O’Denius TM, Yao B, Kubatov A, Du GD. Organometallics 2020; 39: 3375
  • 58 Vasilenko V, Blasius CK, Wadepohl H, Gade LH. Angew. Chem. Int. Ed. 2017; 56: 8393
  • 59 Barman MK, Das K, Maji B. J. Org. Chem. 2019; 84: 1570
  • 60 Erken C, Kaithal A, Sen S, Weyhermüller T, Hölscher M, Werlé C, Leitner W. Nat. Commun. 2018; 9: 4521
  • 61 Nguyen TT, Kim JH, Kim S, Oh C, Flores M, Groy TL, Baik MH, Trovitch RJ. Chem. Commun. 2020; 56: 3959
  • 62 Garhwal S, Kroeger AA, Thenarukandiyil R, Fridman N, Karton A, de Ruiter G. Inorg. Chem. 2021; 60: 494
  • 63 Brzozowska A, Zubar V, Ganardi RC, Rueping M. Org. Lett. 2020; 22: 3765
  • 64 Weber S, Zobernig D, Stöger B, Veiros LF, Kirchner K. Angew. Chem. Int. Ed. 2021; 60: 24488
  • 65 Kostera S, Peruzzini M, Kirchner K, Gonsalvi L. ChemCatChem 2020; 12: 4625
  • 66 Thenarukandiyil R, Satheesh V, Shimon LJ. W, de Ruiter G. Chem. Asian J. 2021; 16: 999
  • 67 Ghosh P, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2021; 60: 16035
  • 68 Zhang G, Zeng H, Li S, Johnson J, Mo Z, Neary MC, Zheng S. Dalton Trans. 2020; 49: 2610
  • 69 Ghaffari B, Mendes-Burak J, Chan KW, Coperet C. Chem. Eur. J. 2019; 25: 13869
  • 70 Elangovan S, Topf C, Fischer S, Jiao H, Spannenberg A, Baumann W, Ludwig R, Junge K, Beller M. J. Am. Chem. Soc. 2016; 138: 8809
  • 71 Elangovan S, Garbe M, Jiao H, Spannenberg A, Junge K, Beller M. Angew. Chem. Int. Ed. 2016; 55: 15364
  • 72 Kallmeier F, Irrgang T, Dietel T, Kempe R. Angew. Chem. Int. Ed. 2016; 55: 11806
  • 73 Espinosa-Jalapa NA, Nerush A, Shimon LJ. W, Leitus G, Avram L, Ben-David Y, Milstein D. Chem. Eur. J. 2017; 23: 5934
    • 74a Dub PA, Henson NJ, Martin RL, Gordon JC. J. Am. Chem. Soc. 2014; 136: 3505
    • 74b Dub PA, Gordon JC. Nat. Rev. Chem. 2018; 2: 396
  • 75 Papa V, Cao YX, Spannenberg A, Junge K, Beller M. Nat. Catal. 2020; 3: 135
  • 76 Pan HJ, Hu X. Angew. Chem. Int. Ed. 2020; 59: 4942
  • 77 Dubey A, Nencini L, Fayzullin RR, Nervi C, Khusnutdinova JR. ACS Catal. 2017; 7: 3864
  • 78 Wang Y, Zhu L, Shao Z, Li G, Lan Y, Liu Q. J. Am. Chem. Soc. 2019; 141: 17337
  • 79 Yang W, Chernyshov IY, van Schendel RK. A, Weber M, Muller C, Filonenko GA, Pidko EA. Nat. Commun. 2021; 12: 12
  • 80 van Putten R, Benschop J, de Munck VJ, Weber M, Muller C, Filonenko GA, Pidko EA. ChemCatChem 2019; 11: 5232
  • 81 Papa V, Cabrero-Antonino JR, Alberico E, Spanneberg A, Junge K, Junge H, Beller M. Chem. Sci. 2017; 8: 3576
  • 82 Ryabchuk P, Stier K, Junge K, Checinski MP, Beller M. J. Am. Chem. Soc. 2019; 141: 16923
    • 83a Kaithal A, Holscher M, Leitner W. Angew. Chem. Int. Ed. 2018; 57: 13449
    • 83b Kaithal A, Werlé C, Leitner W. JACS Au 2021; 1: 130
  • 84 Bruneau-Voisine A, Wang D, Roisnel T, Darcel C, Sortais J.-B. Catal. Commun. 2017; 92: 1
  • 85 Wei D, Bruneau-Voisine A, Chauvin T, Dorcet V, Roisnel T, Valyaev DA, Lugan N, Sortais JB. Adv. Synth. Catal. 2018; 360: 676
  • 86 Buhaibeh R, Filippov OA, Bruneau-Voisine A, Willot J, Duhayon C, Valyaev DA, Lugan N, Canac Y, Sortais JB. Angew. Chem. Int. Ed. 2019; 58: 6727
  • 87 Glatz M, Stoger B, Himmelbauer D, Veiros LF, Kirchner K. ACS Catal. 2018; 8: 4009
  • 88 Weber S, Brunig J, Veiros LF, Kirchner K. Organometallics 2021; 40: 1388
  • 89 van Putten R, Uslamin EA, Garbe M, Liu C, Gonzalez-de-Castro A, Lutz M, Junge K, Hensen EJ. M, Beller M, Lefort L, Pidko EA. Angew. Chem. Int. Ed. 2017; 56: 7531
  • 90 Liu C, van Putten R, Kulyaev PO, Filonenko GA, Pidko EA. J. Catal. 2018; 363: 136
  • 91 Widegren MB, Harkness GJ, Slawin AM. Z, Cordes DB, Clarke ML. Angew. Chem. Int. Ed. 2017; 56: 5825
  • 92 Widegren MB, Clarke ML. Org. Lett. 2018; 20: 2654
  • 93 Garbe M, Junge K, Walker S, Wei Z, Jiao H, Spannenberg A, Bachmann S, Scalone M, Beller M. Angew. Chem. Int. Ed. 2017; 56: 11237
    • 94a Ling F, Hou H, Chen J, Nian S, Yi X, Wang Z, Song D, Zhong W. Org. Lett. 2019; 21: 3937
    • 94b Ling F, Chen JC, Nian SF, Hou HC, Yi X, Wu FF, Xu M, Zhong WH. Synlett 2020; 31: 285
  • 95 Zeng LY, Yang HX, Zhao ML, Wen JL, Tucker JH. R, Zhang XM. ACS Catal. 2020; 10: 13794
  • 96 Seo CS. G, Tsui BT. H, Gradiski MV, Smith SA. M, Morris RH. Catal. Sci. Technol. 2021; 11: 3153
    • 97a Zhang L, Tang Y, Han Z, Ding K. Angew. Chem. Int. Ed. 2019; 58: 4973
    • 97b Zhang L, Wang Z, Han Z, Ding K. Angew. Chem. Int. Ed. 2020; 59: 15565
  • 98 Widegren MB, Clarke ML. Catal. Sci. Technol. 2019; 9: 6047
    • 99a Garduño JA, García JJ. ACS Catal. 2018; 9: 392
    • 99b Weber S, Stoger B, Kirchner K. Org. Lett. 2018; 20: 7212
    • 99c Weber S, Veiros LF, Kirchner K. Adv. Synth. Catal. 2019; 361: 5412
  • 100 Wei D, Bruneau-Voisine A, Valyaev DA, Lugan N, Sortais JB. Chem. Commun. 2018; 54: 4302
  • 101 Freitag F, Irrgang T, Kempe R. J. Am. Chem. Soc. 2019; 141: 11677
  • 102 Wang ZL, Chen L, Mao GL, Wang CY. Chin. Chem. Lett. 2020; 31: 1890
  • 103 Zubar V, Borghs JC, Rueping M. Org. Lett. 2020; 22: 3974
  • 104 Liu C, Wang M, Liu S, Wang Y, Peng Y, Lan Y, Liu Q. Angew. Chem. Int. Ed. 2021; 60: 5108
  • 105 Zou Y.-Q, Chakraborty S, Nerush A, Oren D, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal. 2018; 8: 8014
    • 106a Kumar A, Janes T, Espinosa-Jalapa NA, Milstein D. Angew. Chem. Int. Ed. 2018; 57: 12076
    • 106b Zubar V, Lebedev Y, Azofra LM, Cavallo L, El-Sepelgy O, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 13439
  • 107 Das UK, Kumar A, Ben-David Y, Iron MA, Milstein D. J. Am. Chem. Soc. 2019; 141: 12962
  • 108 Das UK, Janes T, Kumar A, Milstein D. Green Chem. 2020; 22: 3079
  • 109 Bertini F, Glatz M, Gorgas N, Stoger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L. Chem. Sci. 2017; 8: 5024
  • 110 Kumar A, Daw P, Espinosa-Jalapa NA, Leitus G, Shimon LJ. W, Ben-David Y, Milstein D. Dalton Trans. 2019; 48: 14580
  • 111 Kostera S, Weber S, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L. Organometallics 2021; 40: 1213
  • 112 Kar S, Goeppert A, Kothandaraman J, Prakash GK. S. ACS Catal. 2017; 7: 6347
  • 113 Kuß DA, Hölscher M, Leitner W. ChemCatChem 2021; 13: 3319
    • 114a Rawat KS, Mahata A, Choudhuri I, Pathak B. J. Phys. Chem. C 2016; 120: 16478
    • 114b Zhang L, Pu M, Lei M. Dalton Trans. 2021; 50: 7348
  • 115 Weber S, Stoger B, Veiros LF, Kirchner K. ACS Catal. 2019; 9: 9715
  • 116 Zubar V, Sklyaruk J, Brzozowska A, Rueping M. Org. Lett. 2020; 22: 5423
  • 117 Garbe M, Budweg S, Papa V, Wei ZH, Hornke H, Bachmann S, Scalone M, Spannenberg A, Jiao HJ, Junge K, Beller M. Catal. Sci. Technol. 2020; 10: 3994
  • 118 Perez M, Elangovan S, Spannenberg A, Junge K, Beller M. ChemSusChem 2017; 10: 83
  • 119 Wang D, Bruneau-Voisine A, Sortais JB. Catal. Commun. 2018; 105: 31
  • 120 Bruneau-Voisine A, Wang D, Dorcet V, Roisnel T, Darcel C, Sortais JB. Org. Lett. 2017; 19: 3656
  • 121 Martinez-Ferrate O, Werlé C, Franciò G, Leitner W. ChemCatChem 2018; 10: 4514
  • 122 Ganguli K, Shee S, Panja D, Kundu S. Dalton Trans. 2019; 48: 7358
  • 123 Zhang C, Hu BW, Chen DF, Xia HP. Organometallics 2019; 38: 3218
  • 124 Zirakzadeh A, de Aguiar SR. M. M, Stoger B, Widhalm M, Kirchner K. ChemCatChem 2017; 9: 1744
  • 126 Passera A, Mezzetti A. Adv. Synth. Catal. 2019; 361: 4691
  • 127 Azouzi K, Bruneau-Voisine A, Vendier L, Sortais J.-B, Bastin S. Catal. Commun. 2020; 142: 106040
  • 128 van Putten R, Filonenko GA, Gonzalez de Castro A, Liu C, Weber M, Muller C, Lefort L, Pidko E. Organometallics 2019; 38: 3187
  • 129 Wang LX, Lin J, Sun QS, Xia CG, Sun W. ACS Catal. 2021; 11: 8033
  • 130 Oates CL, Widegren MB, Clarke ML. Chem. Commun. 2020; 56: 8635
    • 131a Wei D, Bruneau-Voisine A, Dubois M, Bastin S, Sortais JB. ChemCatChem 2019; 11: 5256
    • 131b Dubey A, Rahaman SM. W, Fayzullin RR, Khusnutdinova JR. ChemCatChem 2019; 11: 3844
  • 132 Tan ZD, Xiong BA, Yang J, Ci CG, Jiang HF, Zhang M. J. Catal. 2020; 392: 135
    • 133a Garduño JA, Flores-Alamo M, García JJ. ChemCatChem 2019; 11: 5330
    • 133b Sarkar K, Das K, Kundu A, Adhikari D, Maji B. ACS Catal. 2021; 11: 2786
  • 134 Reed-Berendt BG, Mast N, Morrill LC. Eur. J. Org. Chem. 2020; 1136
  • 135 Zhou YP, Mo Z, Luecke MP, Driess M. Chem. Eur. J. 2018; 24: 4780
  • 136 Brzozowska A, Azofra LM, Zubar V, Atodiresei I, Cavallo L, Rueping M, El-Sepelgy O. ACS Catal. 2018; 8: 4103
  • 137 Sklyaruk J, Zubar V, Borghs JC, Rueping M. Org. Lett. 2020; 22: 6067
  • 138 Vigneswaran V, MacMillan SN, Lacy DC. Organometallics 2019; 38: 4387