Subscribe to RSS
DOI: 10.1055/a-1645-2632
The Trajectory of the (η 5-Cyclopentadienyl)cobalt-Mediated Cycloisomerization of Ene-Yne-Ene-Type Allyl Propargylic Ethers to Furans: A DFT Appraisal
This work benefited from pecuniary support by the University of California at Berkeley (K.P.C.V.). We are grateful to the National Science Foundation (CHF-1764328 to K.N.H.) for financial support. Calculations were performed on the Hoffman2 cluster at the University of California, Los Angeles, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (OCI-1053575).
Congratulations to Professor Sarah Reisman at the California Institute of Technology for having been chosen as the first recipient of the Dr. Margaret Faul Award for Women in Chemistry
Abstract
The mechanisms by which the complexes CpCoL2 (Cp = C5H5; L = CO or CH2=CH2) mediate the cycloisomerizations of α,δ,ω-enynenes containing allylic ether linkages are probed by DFT methods. The outcomes corroborate experimental results and provide energetic and structural details of the trajectories leading to 3-(oxacyclopentyl or cycloalkyl)furans via the intermediacy of isolable CpCo-η 4-dienes. They comprise initial stereoselective complexation of one of the double bonds and the triple bond, rate-determining oxidative coupling to a triplet 16e cobalta-2-cyclopentene, and terminal double bond docking, followed by stereocontrolled insertion to assemble intermediate cis- and trans-fused triplet cobalta-4-cycloheptenes. A common indicator of the energetic facility of the latter is the extent of parallel alignment of the alkene moiety and its target Co–Cα bond. The cobalta-4-cycloheptenes transform further by β-hydride elimination–reductive elimination to furnish CpCo-η 4-dienes, which are sufficiently kinetically protected to allow for their experimental observation. The cascade continues through cobalt-mediated hydride shifts and dissociation of the aromatic furan ring. The findings in silico with respect to the stereo-, regio-, and chemoselectivity are in consonance with those obtained in vitro.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1645-2632.
- Supporting Information
- xyz File
Publication History
Received: 10 August 2021
Accepted after revision: 15 September 2021
Accepted Manuscript online:
15 September 2021
Article published online:
27 September 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Chang C.-A, Gürtzgen S, Johnson EP, Vollhardt KP. C. Synthesis 2020; 52: 399
- 2a Liu X, Li B, Liu Q. Synthesis 2019; 51: 1293
- 2b Ai W, Zhong R, Liu X, Liu Q. Chem. Rev. 2019; 119: 2876
- 2c Hirano M. ACS Catal. 2019; 9: 1408
- 2d Pellissier H. Coord. Chem. Rev. 2018; 360: 122
- 2e Hu Y, Bai M, Yang Y, Zhou Q. Org. Chem. Front. 2017; 4: 2256
- 2f Chen W.-W, Xu M.-H. Org. Biomol. Chem. 2017; 15: 1029
- 2g Röse P, Hilt G. Synthesis 2016; 48: 463
- 2h Stathakis CI, Gkizis PL, Zografos AL. Nat. Prod. Rep. 2016; 33: 1093
- 2i Gandeepan P, Cheng C.-H. Acc. Chem. Res. 2015; 48: 1194
- 2j Micalizio GC, Hale SB. Acc. Chem. Res. 2015; 48: 663
- 3a Domínguez G, Pérez-Castells J. Chem. Eur. J. 2016; 22: 6720
- 3b Suleymanov AA, Vasilyev DV, Novikov VV, Nelyubina YV, Perekalin DS. Beilstein J. Org. Chem. 2017; 13: 639 ; and references cited therein
- 3c Lanzi M, Santacroce V, Balestri D, Marchiò L, Bigi F, Maggi R, Malacria M, Maestri G. Angew. Chem. Int. Ed. 2019; 58: 6703 ; and references cited therein
- 4a Roglans A, Pla-Quintana A, Solà M. Chem. Rev. 2021; 121: 1894
- 4b Delorme M, Punter A, Oliveira R, Aubert C, Carissan Y, Parrain J.-L, Amatore M, Nava P, Commeiras L. Dalton Trans. 2019; 48: 15767
- 4c Anderson EA, Paton RS. Chimia 2018; 72: 614
- 4d Cassú D, Parella T, Solà M, Pla-Quintana A, Roglans A. Chem. Eur. J. 2017; 23: 14889
- 4e Kiyota S, In S, Komine N, Hirano M. Chem. Lett. 2017; 46: 1040
- 4f Yang T, Ehara M. J. Org. Chem. 2017; 82: 2150
- 4g Mekareeya A, Walker PR, Couce-Rios A, Campbell CD, Steven A, Paton R, Anderson EA. J. Am. Chem. Soc. 2017; 139: 10104
- 4h Hirano M, Ueda T, Komine N, Komiya S, Nakamura S, Deguchi H, Kawauchi S. J. Organomet. Chem. 2015; 797: 174
- 4i Haraburda E, Torres O, Parella T, Solà M, Pla-Quintana A. Chem. Eur. J. 2014; 20: 5034
- 4j Liu T, Han L, Han S, Bi S. Organometallics 2014; 34: 280
- 4k Hong X, Liu P, Houk KN. J. Am. Chem. Soc. 2013; 135: 1456
- 4l Dachs A, Pla-Quintana A, Parella T, Solà M, Roglans A. Chem. Eur. J. 2011; 17: 14493
- 4m Varela JA, Saá C. J. Organomet. Chem. 2009; 694: 143
- 4n Clavier H, Correa A, Escudero-Adán EC, Benet-Buchholz J, Cavallo L, Nolan SP. Chem. Eur. J. 2009; 15: 10244
- 4o Montero-Campillo MM, Rodríguez-Otero J, Cabaleiro-Lago E. J. Phys. Chem. A 2008; 112: 2423
- 5a Lebœuf D, Iannazzo L, Geny A, Malacria M, Vollhardt KP. C, Aubert C, Gandon V. Chem. Eur. J. 2010; 16: 8904
- 5b Aubert C, Gandon V, Geny A, Heckrodt TJ, Malacria M, Paredes E, Vollhardt KP. C. Chem. Eur. J. 2007; 13: 7466
- 5c Geny A, Lebœuf D, Rouquié G, Vollhardt KP. C, Malacria M, Gandon V, Aubert C. Chem. Eur. J. 2007; 13: 5408
- 5d Agenet N, Gandon V, Vollhardt KP. C, Malacria M, Aubert C. J. Am. Chem. Soc. 2007; 129: 8860
- 5e Gandon V, Agenet N, Vollhardt KP. C, Malacria M, Aubert C. J. Am. Chem. Soc. 2006; 128: 8509
- 6 Hong P, Yamamoto Y, Yamazaki H. J. Organomet. Chem. 1982; 232: 71
- 7 For a review, see: Espinet P, Albéniz AC. Fundamentals of Molecular Catalysis . Kurosawa H, Yamamoto A. Elsevier; Amsterdam: 2003: 293
- 8a Leong MK, Mastryukov VS, Boggs JE. J. Mol. Struct. 1998; 445: 149
- 8b Borgen G. Acta Chem. Scand., Ser. B 1974; 28: 135
- 8c St Jacques M, Vaziri C. Can J. Chem. 1971; 49: 1256
- 8d Neto N, Di Lauro C, Califano S. Spectrochim. Acta, Part A 1970; 26: 1489
- 8e For the first postulation of such a cobaltacycloheptene ring flip, see: Wakatsuki Y, Aoki K, Yamazaki H. J. Am. Chem. Soc. 1979; 101: 1123
- 8f See also: Scozzafava M, Stolzenberg AM. Organometallics 1988; 7: 1073
- 9a Cammack JK, Jalisatgi S, Matzger AJ, Negrón A, Vollhardt KP. C. J. Org. Chem. 1996; 61: 4798
- 9b King JA. Jr, Vollhardt KP. C. J. Organomet. Chem. 1993; 460: 91
- 10 For a tabulation of van der Waals radii, see: Alvarez S. Dalton Trans. 2013; 42: 8617
- 11a Chen Z.-M, Liu J, Guo J.-Y, Loch M, DeLuca RJ, Sigman MS. Chem. Sci. 2019; 10: 7246 ; and references cited therein
- 11b Giri R, Shekhar KC. J. Org. Chem. 2018; 83: 3013
- 11c Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
- 11d Gómez-Gallego M, Sierra MA. Chem. Rev. 2011; 111: 4857
- 11e Piers WE, Collins S. In Comprehensive Organometallic Chemistry III, Vol. 1. Mingos DM. P, Crabtree RH. Elsevier; Amsterdam: 2007: 141
- 11f Lu X. Top. Catal. 2005; 35: 73
- 11g Sen A, Kang M. In Late Transition Metal Polymerization Catalysis . Rieger B, Saunders Baugh L, Kacker S, Striegler S. Wiley-VCH; Weinheim: 2003: 307
- 11h Trost BM, Romero DL, Rise F. J. Am. Chem. Soc. 1994; 116: 4268
- 11i Trost BM, Tanoury GJ, Lautens M, Chan C, MacPherson DT. J. Am. Chem. Soc. 1994; 116: 4255
- 11j Trost BM, Lautens M, Chan C, Jebaratnam DJ, Mueller T. J. Am. Chem. Soc. 1991; 113: 636
- 11k Trost BM, Lee DC, Rise F. Tetrahedron Lett. 1989; 30: 651
For some recent reviews of related isomerizations, see:
For a topical review, see:
For examples of pertinent intramolecular dienyne cycloisomerizations, see ref. 1 and:
For an excellent review, see:
For a collection of specific examples, see:
For our DFT appraisals with pertinent CpCo systems, see:
The cycloheptene frame is conformationally very flexible, see:
For selected pertinent discussions of steric and electronic effects on β-hydride eliminations, see: