CC BY-NC-ND 4.0 · Planta Medica International Open 2021; 8(03): e143-e152
DOI: 10.1055/a-1588-2875
Original Papers

In vitro Inhibitory Action of the Essential Oils of Origanum Vulgare and Rosmarinus Officinalis against Aspergillus Fumigatus

Antonia Carolina Melo Monteiro
1   Unieuro University Center, Pharmacy Course, Brasilia, DF, Brazil
,
Aminata Doucoure Drame
1   Unieuro University Center, Pharmacy Course, Brasilia, DF, Brazil
,
Francisca Melo Nascimento
1   Unieuro University Center, Pharmacy Course, Brasilia, DF, Brazil
,
Ana Luisa Miranda-Vilela
2   Independent Researcher, Brasília 70.863-100, Brazil
,
Alexandre Vasconcelos Lima
3   Independent Researcher, Brasília 71.535-025, Brazil
,
Mirra Angelina Neres da Silva
4   Mass Spectrometry Laboratory/Chromatography Laboratory, Department of Chemistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
,
Ieler Ferreira Ribeiro
1   Unieuro University Center, Pharmacy Course, Brasilia, DF, Brazil
› Author Affiliations

Abstract

Aspergillus fumigatus is the main etiological agent of aspergillosis. Considering azole antifungal drug resistance in A. fumigatus, which compromises treatment, new alternatives are needed. Among them, essential oils (EOs) can be an alternative treatment, having shown positive results in inhibiting phytopathogenic fungi in vitro. We aimed to determine the in vitro antifungal activity of Origanum vulgare L. subsp. hirtum (Link) (oregano) and Rosmarinus officinalis L. (rosemary) EOs alone and in association (O. vulgare+R. officinalis) against A. fumigatus. EOs were analyzed by gas chromatography (GC-FID and GC/MS systems), and analyses showed that the major components of O. vulgare EO were carvacrol (67.8%), p-cymene (14.8%), and thymol (3.9%); for R. officinalis, they were the monoterpenes 1,8-cineole (49.1%), camphor (18.1%) and α-pinene (8.1). For biological assays, five EO concentrations, 0.2; 0.4; 0.6; 0.8 and 1.0%, were used in disk diffusion and agar dilution tests for 21 days. In disk diffusion, O. vulgare EO alone and in association (O. vulgare+R. officinalis) showed fungicidal activity at all concentrations. In agar dilution, inhibitory action was demonstrated from 0.6% for O. vulgare EO and in association (O. vulgare+R. officinalis). R. officinalis EO at 1.0% showed no fungal growth, determining the minimum inhibitory concentration (MIC). The present study demonstrated inhibitory actions of O. vulgare and R. officinalis EOs in A. fumigatus. GC analyses corroborated the literature regarding their antibacterial and antifungal effects. However, further in vitro and in vivo studies are needed to evaluate EOs as alternative antifungals for treating aspergillosis.



Publication History

Received: 28 November 2020
Received: 13 July 2021

Accepted: 02 August 2021

Article published online:
17 November 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Abdolrasouli A, Rhodes J, Beale MA, Hagen F, Rogers TR, Chowdhary A, Meis JF, Armstrong-James D, Fisher MC. Genomic Context of Azole Resistance Mutations in Aspergillus fumigatus Determined Using Whole-Genome Sequencing. mBio 2015; 6: e00536-15
  • 2 Chowdhary A, Sharma C, Hagen F, Meis JF. Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms. Future Microbiology 2014; 9: 697-711
  • 3 Hokken MWJ, Zoll J, Coolen JPM, Zwaan BJ, Verweij PE, Melchers WJG. Phenotypic plasticity and the evolution of azole resistance in Aspergillus fumigatus; an expression profile of clinical isolates upon exposure to itraconazole. BMC Genomics 2019; 20: 28
  • 4 Osório LG, Silva AL, Fonseca AOS, Dias TP, Martins OA, Faria RO, Meirales RO, Cleff MCA, Freitag R, Mello JRB. Atividade in vitro do óleo essencial de Origanum vulgare L. em isolados clínicos de Aspergillus spp. Arq Bras Med Vet Zootec 2019; 71: 204-210
  • 5 Khan M, Khan ST, Khan M, Mousa AA, Mahmood A, Alkhathlan HZ. Chemical diversity in leaf and stem essential oils of Origanum vulgare L. and their effects on microbicidal activities. AMB Express 2019; 9: 176
  • 6 Waller SB, Madrid IM, Silva AL, Dias de Castro LL, Cleff MB, Ferraz V, Meirales MC, Zanette R, de Mello JR. In Vitro Susceptibility of Sporothrix brasiliensis to Essential Oils of Lamiaceae Family. Mycopathologia 2016; 181: 857-863
  • 7 de Sousa LL, de Andrade SCA, Athayde AJAA, de Oliveira CEV, de Sales CV, Madruga MS, de Souza EL. Efficacy of Origanum vulgare L. and Rosmarinus officinalis L. essential oils in combination to control postharvest pathogenic Aspergillus and autochthonous mycoflora in Vitis labrusca L. (table grapes). Int J Food Microbiol 2013; 165: 312-318
  • 8 Mehdizadeh L, Najafgholi HM, Biouki RY, Moghaddam M. Chemical Composition and Antimicrobial Activity of Origanum vulgare subsp. viride Essential Oils Cultivated in Two Different Regions of Iran. J Essent Oil Bear Pl 2018; 21: 1062-1075
  • 9 Memar M, Raei P, Alizadeh N, Akbari aghdam M, Kafil H. Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. Rev Med Microbiol. 2017; 28: 63-68
  • 10 Giweli A, Džamić AM, Soković M, Ristić MS, Marin PD. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya. Molecules 2012; 17: 4836-4850
  • 11 Marchese A, Arciola CR, Barbieri R, Silva AS, Nabavi SF, Tsetegho Sokeng AJ, Izadi M, Jafari NJ, Sunar I, Daglia M, Nabavi SM. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials (Basel) 2017; 10: 947
  • 12 Yoneyama K, Natsume M. 4.13 - Allelochemicals for Plant–Plant and Plant– Microbe Interactions. In: Liu H-W, Mander L.editors. Comprehensive Natural Products II Oxford. Elsevier; 2010: p 539–561. (AQ - this should be reference 12 and all others should be renumbered subsequently)
  • 13 Morcia C, Malnati M, Terzi V. In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29: 415-422
  • 14 Şimşek M, Duman R. Investigation of Effect of 1,8-cineole on Antimicrobial Activity of Chlorhexidine Gluconate. Pharmacognosy Res 2017; 9: 234-237
  • 15 Rivas da Silva AC, Lopes P, Barros de Azevedo MM, Costa DC, Alviano CS, Alviano DS. Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012; 17: 6305-6316
  • 16 Nóbrega JR, DdF Silva, Andrade Júnior FPd, Sousa PMS, Figueiredo PTRd, Cordeiro LV. et al. Antifungal action of α-pinene against Candida spp. isolated from patients with otomycosis and effects of its association with boric acid. Nat Prod Res. 2020 Oct 23; 1-4. 10.1080/14786419.2020.1837803. Online ahead of print.
  • 17 Nieto G, Ros G, Castillo J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines (Basel) 2018; 5: 98
  • 18 Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J. EUCAST definitive document E.DEF 9.3.1: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. 2017 [March 4, 2020]. Available from: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_moulds
  • 19 EUCAST. EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia–forming moulds. Clin Microbiol Infect 2008; 14: 982-984
  • 20 Carmo ES, Lima EdO, Souza ELd. The potential of Origanum vulgare L. (Lamiaceae) essential oil in inhibiting the growth of some food-related Aspergillus species. Braz J Microbiol 2008; 39: 362-367
  • 21 Wiederhold NP, Patterson TF. Emergence of Azole Resistance in Aspergillus. Semin Respir Crit Care Med 2015; 36: 673-680
  • 22 Baghloul F, Mansori R, Djahoudi A. In vitro antifungal effect of Rosmarinus officinalis essential oil on Aspergillus niger. Natl J Physiol Pharm Pharmacol 2017; 7: 1-5
  • 23 Fu Y, Zu Y, Chen L, Shi X, Wang Z, Sun S, Efferth T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother Res 2007; 21: 989-994
  • 24 Bomfim NdS, Kohiyama CY, Nakasugi LP, Nerilo SB, Mossini SAG, Romoli JCZ, Graton Mikcha JM, Abreu Filho BA, Machinski M. Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Aspergillus flavus. Food Addit Contam A 2019; 37: 153-161
  • 25 Alexa E, Sumalan RM, Danciu C, Obistioiu D, Negrea M, Poiana M-A, Rus C, Radulov I, Pop G, Dehelean C. Synergistic Antifungal, Allelopatic and Anti-Proliferative Potential of Salvia officinalis L., and Thymus vulgaris L. Essential Oils. Molecules 2018; 23: 185
  • 26 Bone K, Mills S. Principles and Practice of Phytotherapy. Second Edition. Saint Louis: Churchill Livingstone; 2013
  • 27 Jafri H, Ansari FA, Ahmad I. Chapter 9 - Prospects of Essential Oils in Controlling Pathogenic Biofilm. In: Ahmad Khan MS, Ahmad I, Chattopadhyay D. Editors, New Look to Phytomedicine. Academic Press; 2019: p 203–236
  • 28 Couto C, Raposo N, Rozental S, Borba-Santos L, Bezerra L, Almeida P. et al. Chemical Composition and Antifungal Properties of Essential Oil of Origanum vulgare Linnaeus (Lamiaceae) against Sporothrix schenckii and Sporothrix brasiliensis. Trop J Pharm Res 2015; 14: 1207-1212
  • 29 Khan I, Bahuguna A, Kumar P, Bajpai VK, Kang SC. Antimicrobial Potential of Carvacrol against Uropathogenic Escherichia coli via Membrane Disruption, Depolarization, and Reactive Oxygen Species Generation. Front Microbiol 2017; 8: 2421-2421
  • 30 Dias N, Dias MC, Cavaleiro C, Sousa MdC, Lima N, Machado SM. Oxygenated monoterpenes-rich volatile oils as potential antifungal agents for dermatophytes. Nat Prod Res 2017; 31: 460-464
  • 31 Silici S, Koc AN. Comparative study of in vitro methods to analyse the antifungal activity of propolis against yeasts isolated from patients with superficial mycoses. Letters in applied microbiology 2006; 43: 318-324
  • 32 Souza NAB, Lima EdO, Guedes DN, Pereira FdO, Souza ELd, Sousa FBd. Efficacy of Origanum essential oils for inhibition of potentially pathogenic fungi. Braz J Pharm Sci 2010; 46: 499-508
  • 33 Hollenbach CB, Bing RS, Stedile R, Mello FPS, Schuch TL, Rodrigues MRAFB. Reproductive Toxicity Assessment of Origanum vulgare Essential Oil on Male Wistar Rats. Acta Sci Vet 2015; 43: 1-7
  • 34 Liu W, Yin D, Li N, Hou X, Wang D, Li D, Liu J. Influence of Environmental Factors on the Active Substance Production and Antioxidant Activity in Potentilla fruticosa L. and Its Quality Assessment. Sci Rep 2016; 6: 28591
  • 35 Yang L, Wen K-S, Ruan X, Zhao Y-X, Wei F, Wang Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018; 23: 762
  • 36 Węglarz Z, Kosakowska O, Przybył JL, Pióro-Jabrucka E, Bączek K. The Quality of Greek Oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and Common Oregano (O. vulgare L. subsp. vulgare) Cultivated in the Temperate Climate of Central Europe. Foods 2020; 9: 1671
  • 37 Sezik E, Tümen G, Kirimer N, Özek T, Baser KHC. Essential Oil Composition of Four Origanum vulgare Subspecies of Anatolian Origin. J Essent Oil Res 1993; 5: 425-431
  • 38 Baser KHC, Ozek T, Kurkcuoglu M, Tümen G. The Essential Oil of Origanum vulgare subsp. hirtum of Turkish Origin. J Essent Oil Res 1994; 6: 31-36
  • 39 Stešević D, Jaćimović Z, Šatović Z, Šapčanin A, Jančan G, Kosović M, Damjanović-Vratnica B. Chemical Characterization of Wild Growing Origanum vulgare Populations in Montenegro. Nat Prod Commun 2018; 13: 1357-1362
  • 40 Zvezdanova ME, Escribano P, Ruiz A, MCM-J Peláez T, Collazos A. et al. Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a simplified sample processing and an in-house library. Med Myco 2019; 57: 63-70
  • 41 Wattal C, Oberoi JK, Goel N, Raveendran R, Khanna S. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis 2017; 36: 807-812
  • 42 Normand A-C, Cassagne C, Gautier M, Becker P, Ranque S, Hendrickx M, Packeu A, L'Ollivier C. Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BMC Microbiol 2017; 17: 25-25
  • 43 Basava SPR, Ambati S, Jithendra K, Premanadham N, Reddy PS, Mannepuli CK. Efficacy of Iodine-Glycerol versus Lactophenol Cotton Blue for Identification of Fungal Elements in the Clinical Laboratory. Int J Curr Microbiol App Sci 2016: 536-541.
  • 44 McMullen AR, Wallace MA, Pincus DH, Wilkey K, Burnham CA. Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System for Identification of Clinically Relevant Filamentous Fungi. Journal of Clinical Microbiology 2016; 54: 2068-2073
  • 45 NCCLS. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard. Eighth Edition ed. Vol. 23. Pennsylvania, USA: National Committee for Clinical Laboratory Standards (NCCLS); 2003. (NCCLS document M2-A8)
  • 46 CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed.: Clinical and Laboratory Standards Institute (CLSI); 2019. (CLSI document M100)
  • 47 Frias DFR, Kozusny-Andreani DI. Verificação da atividade antifungica de extratos de plantas e óleo de eucalipto no controle in vitro de Aspergillus niger. Ces Med Vet Zootec 2009; 4: 12-19
  • 48 Guinea J, Verweij PE, Meletiadis J, Mouton JW, Barchiesi F, Arendrup MC. How to: EUCAST recommendations on the screening procedure E.Def 10.1 for the detection of azole resistance in Aspergillus fumigatus isolates using four-well azole-containing agar plates. Clin Microbiol Infect 2019; 25: 681-687
  • 49 Rodriguez-Tudela J, Arendrup MC, Arikan-Akdagli S, Barchiesi F, Bille J, Cuenca-Estrella M. EUCAST definitive document E.DEF 9.1: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. 2008 [updated 01/01; March 2, 2020]. Available from: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_moulds
  • 50 Lobato RC, Klafke GB, Xavier MO. Reprodutibilidade de distintas técnicas associadas à filtração na padronização de inóculo de conídios de Aspergillus fumigatus. Vittalle 2016; 28: 84-89
  • 51 Deus RJA, Alves CN, Arruda MSP. Avaliação do efeito antifúngico do óleo resina e do óleo essencial de copaíba (Copaifera multijuga Hayne). Rev Bras Plantas Med 2011; 13: 01-07
  • 52 Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45: 493-496
  • 53 Sejas LM, Silbert S, Reis AO, Sader HS. Avaliação da qualidade dos discos com antimicrobianos para testes de disco-difusão disponíveis comercialmente no Brasil. J Bras Patol Med Lab 2003; 39: 27-35
  • 54 Herman A, Tambor K, Herman A. Linalool Affects the Antimicrobial Efficacy of Essential Oils. Curr Microbiol 2015; 72: 165-172
  • 55 Zago JAA, Ushimaru PI, Barbosa LN, Fernandes Junior A. Sinergismo entre óleos essenciais e drogas antimicrobianas sobre linhagens de Staphylococcus aureus e Escherichia coli isoladas de casos clínicos humanos. Rev Bras Farmacogn 2009; 19: 828-833
  • 56 Elizei VG, Chalfoun SM, Botelho DMdS, Rebelles PPR. Imobilização de fungos filamentosos com potencial para uso agroindustrial. Arq Inst Biol 2014; 81: 165-172
  • 57 NCCLS. Método de Referência para Testes de Diluição em Caldo para Determinação da Sensibilidade a Terapia Antifúngica de Fungos Filamentosos. Norma Aprovada. Pennsylvania/USA: National Committee for Clinical Laboratory Standards (NCCLS); 2002. (Documento M38-A do NCCLS).