Synthesis 2022; 54(02): 403-410
DOI: 10.1055/a-1587-8859
paper

Palladium-Catalyzed Butoxycarbonylation of Polybromo(hetero)arenes: A Practical Method for the Preparation of (Hetero)arenepolycarboxylates and -carboxylic Acids

Weilong Wu
a   College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. of China
,
Yongkang Jing
a   College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. of China
,
Deyi Zhang
b   College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. of China
,
Xianghe Yan
a   College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. of China
,
Rong Liang
c   College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. of China
,
Zhiqiang Lu
a   College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. of China
,
Baoming Ji
a   College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21372112 and 21801112), the Key Scientific Research Project of Colleges and Universities in Henan Province (19A150004), the General Science Foundation of Henan Province of China (212300410374), and Cultivation Fund of Luoyang Normal University.


Abstract

The palladium-catalyzed alkoxycarbonylation of polybromo­(hetero)arenes was investigated systematically. The results show that cheap and readily available in situ Pd(OAc)2/rac-BINAP catalyst can catalyze the butoxycarbonylation of various polybromo(hetero)arenes efficiently, and gave (hetero)arenepolycarboxylates with moderate to high yield (59–94%). Using this method, two new compounds, 4,4′-bis(butoxycarbonyl)-1,1′-bi-2-naphthol and dibutyl [2,2′-bipyrimidine]-5,5′-dicarboxylate, are reported for the first time. In addition, the gram-scale preparation of carboxylate and carboxylic acids was successful performed by butoxycarbonylation followed by hydrolysis. This shows the wide scope of substrates and practical applications of the Pd(OAc)2/rac-BINAP catalytic system. Moreover, these carboxylic acids and carboxylates can be used as ligands or structural units to construct MOFs, metal complexes, and COFs etc.

Supporting Information

Primary Data



Publication History

Received: 07 July 2021

Accepted after revision: 16 August 2021

Accepted Manuscript online:
16 August 2021

Article published online:
30 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a The Art of Drug Synthesis . Johnson DS, Li JJ. John Wiley & Sons; Hoboken: 2007
    • 1b Zapf A, Beller M. Top. Catal. 2002; 19: 101
    • 1c Stetter J, Lieb F. Angew. Chem. Int. Ed. 2000; 39: 1724
    • 1d Yang W, Han W, Zhang W, Shan L, Sun J. Synlett 2011; 2253
    • 1e Wang ZQ, Zheng CJ, Fu WJ, Xu C, Wu JS, Ji BM. New J. Chem. 2017; 41: 14152
    • 1f Xu CY, Tang SY, Liu JQ, Deng DS, Ji BM. Chin. J. Struct. Chem. 2017; 36: 127
    • 1g Liu L, Xu CY, Li Y, Wang JC, Zhang YP, Wang JJ. Chin. J. Inorg. Chem. 2017; 33: 1817
    • 1h Liu L, Wang JC, Xu CY, Zhang YQ, Li Y, Li CG, Wang JJ, Zhang YP. J. Mol. Struct. 2019; 1180: 7
    • 1i Zhou Y, Zhang HY, Liu Y. J. Photochem. Photobiol., A 2018; 355: 242
  • 2 Osawa T, Kajitani T, Hashizume D, Ohsumi H, Sasaki S, Takata M, Koizumi Y, Saeki A, Seki S, Fukushima T, Aida T. Angew. Chem. Int. Ed. 2012; 51: 7990
  • 3 Rios P, Carter TS, Mooibroek TJ, Crump MP, Lisbjerg M, Pittelkow M, Supekar NT, Boons GJ, Davis AP. Angew. Chem. Int. Ed. 2016; 55: 3387
    • 4a Abel AS, Mitrofanov AY, Yakushev AA, Zenkov IS, Morozkov GV, Averin AD, Beletskaya IP, Michalak J, Brandès S, Bessmertnykh-Lemeune A. Asian J. Org. Chem. 2019; 8: 2128
    • 4b Nandi M, Bej S, Ghosh TK, Ghosh P. Chem. Commun. 2019; 55: 3085
    • 4c Li J, Liao J, Ren Y, Liu C, Yue C, Lu J, Jiang H. Angew. Chem. Int. Ed. 2019; 58: 17148
    • 4d Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Chem. Rev. 2012; 112: 1105
    • 4e Cui Y, Chen B, Qian G. Metal-Organic Frameworks for Photonics Applications . Structure and Bonding, Vol. 157. Chen B, Qian G. Springer; Heidelberg: 2014. pp 2
    • 4f Müller-Buschbaum K, Beuerle F, Feldmann C. Microporous Mesoporous Mater. 2015; 216: 171
    • 5a Zhu M, Fu WJ, Guo WB, Tian YF, Wang ZQ, Xu C, Ji BM. Eur. J. Org. Chem. 2019; 1614
    • 5b Moriwaki K, Satoh K, Takada M, Ishino Y, Ohno T. Tetrahedron Lett. 2005; 46: 7559
    • 5c Daugulis O, Do HQ, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 5d Gooßen LJ, Rodríguez N, Manjolinho F, Lange PP. Adv. Synth. Catal. 2010; 352: 2913
    • 5e Zhu M, Fu W, Guo W, Tian Y, Wang Z, Ji B. Org. Biomol. Chem. 2019; 17: 3374
    • 5f Ye M, Gao GL, Edmunds AJ. F, Worthington PA, Morris JA, Yu JQ. J. Am. Chem. Soc. 2011; 133: 19090
    • 5g Kochi T, Hamasaki T, Aoyama Y, Kawasaki J, Kakiuchi F. J. Am. Chem. Soc. 2012; 134: 16544
    • 5h Hartwig JF. Acc. Chem. Res. 2012; 45: 864
    • 5i Rigoli JW, Weatherly CD, Alderson JM, Vo BT, Schomaker JM. J. Am. Chem. Soc. 2013; 135: 17238
    • 5j Wertjes WC, Wolfe LC, Waller PJ, Kalyani D. Org. Lett. 2013; 15: 5986
    • 5k Ohmura T, Torigoe T, Suginome M. Organometallics 2013; 32: 6170
    • 5l Vasilopoulos A, Zultanski SL, Stahl SS. J. Am. Chem. Soc. 2017; 139: 7705
    • 5m Tamura M, Ogata H, Ishida Y, Takahashi Y. Tetrahedron Lett. 2017; 58: 3808
    • 5n Qi L, Hu K, Yu S, Zhu J, Cheng T, Wang X, Chen J, Wu H. Org. Lett. 2017; 19: 218
    • 5o Obulesu O, Babu KH, Nanubolu JB, Suresh S. J. Org. Chem. 2017; 82: 2926
    • 5p Liao LL, Gui YY, Zhang XB, Shen G, Liu HD, Zhou WJ, Li J, Yu DG. Org. Lett. 2017; 19: 3735
    • 6a Chandler CJ, Deady LW, Reiss JA. J. Heterocycl. Chem. 1981; 18: 599
    • 6b Vismara E, Fontana F, Minisci F. Gazz. Chim. Ital. 1987; 117: 135
    • 6c Mattioli M, Mencarelli P. J. Org. Chem. 1990; 55: 776
    • 6d Dupau P, Renouard T, Bozec HL. Tetrahedron Lett. 1996; 37: 7503
    • 6e Li XH, Tjiptoputro AK, Ding J, Xue JM, Zhu YH. Catal. Today 2017; 279: 77
    • 6f Embaby AM, Lelieveldt LP. W. M, Diness PD. F, Meldal PD. M. Chem. Eur J. 2018; 24: 17424
    • 6g Puodziukynaite E, Oberst JL, Dyer AL, Reynolds JR. J. Am. Chem. Soc. 2012; 134: 968
    • 6h Shigekazu Y. Synth. Commun. 2019; 49: 2210
    • 6i Tanaka K, Oda S, Nishihote S, Hirayama D, Urbanczyk-Lipkowska Z. Tetrahedron: Asymmetry 2009; 20: 2612
    • 7a Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. 2. Negishi E, de Meijere A. Wiley; New York: 2002: 2309
    • 7b Skoda-Foldes R, Kollar L. Curr. Org. Chem. 2002; 6: 1097
    • 7c Wang L, Neumann H, Spannenberg A, Beller M. Chem. Commun. 2017; 53: 7469
    • 7d Sargent BT, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 7520
    • 7e Barnard CF. J. Organometallics 2008; 27: 5402
    • 7f Gross U, Koos P, O’Brien M, Polyzos A, Ley SV. Eur. J. Org. Chem. 2014; 6418
  • 8 Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
  • 9 Ben-David Y, Portnoy M, Milstein D. J. Am. Chem. Soc. 1989; 111: 8742
    • 10a Beller M, Mägerlein W, Indolese AF, Fischer C. Synthesis 2001; 1098
    • 10b Neumann H, Brennführer A, Groß P, Riermeier T, Almena J, Beller M. Adv. Synth. Catal. 2006; 348: 1255
    • 10c Martinelli JR, Watson DA, Freckmann DM. M, Barder TE, Buchwald SL. J. Org. Chem. 2008; 73: 7102
    • 10d Li Y, Xue D, Wang C, Liu ZT, Xiao JL. Chem. Commun. 2012; 48: 1320
    • 10e Wan Y, Alterman M, Larhed M, Hallberg A. J. Org. Chem. 2002; 67: 6232
  • 11 El-ghayoury A, Ziessel R. J. Org. Chem. 2000; 65: 7757
  • 12 Albaneze-Walker J, Bazaral C, Leavey T, Dormer PG, Murry JA. Org. Lett. 2004; 6: 2097
    • 13a Huang YL, Zhong DC, Jiang L, Gong YN, Lu TB. Inorg. Chem. 2017; 56: 705
    • 13b Coskun A, Hmadeh M, Barin G, Gándara F, Li Q, Choi E, Strutt NL, Cordes DB, Slawin AM. Z, Stoddart JF, Sauvage J.-P, Yaghi OM. Angew. Chem. Int. Ed. 2012; 51: 2160
    • 13c Zhang T, Manna K, Lin W. J. Am. Chem. Soc. 2016; 138: 3241
    • 13d Thacker NC, Ji P, Lin Z, Urban A, Lin W. Faraday Discuss. 2017; 201: 303
    • 13e Manna K, Zhang T, Greene FX, Lin W. J. Am. Chem. Soc. 2015; 137: 2665
    • 13f Dehaudt J, Williams NJ, Shkrob IA, Luod H, Dai S. Dalton Trans. 2016; 45: 11624
    • 13g Ji BM, Deng DS, Lan HH, Miao SB, Kang GH, Xu CY. Inorg. Chem. Commun. 2017; 81: 15
    • 13h Deng DS, Guo H, Ji BM, Wang WZ, Ma LF, Luo F. New J. Chem. 2017; 41: 12611
  • 14 Chow H, Ng M. Tetrahedron: Asymmetry 1996; 7: 2251
  • 15 Maldonado RR, Zhang X, Hanna S, Gong X, Gianneschi NC, Hupp JT, Farha OK. Dalton Trans. 2020; 49: 6553
  • 16 Rybáčková M, Bělohradský M, Holý P, Pohl R, Dekoj V, Závada J. Synthesis 2007; 1554
  • 17 Chiong JA, Zhu J, Bailey JB, Kalaj M, Subramanian RH, Xu W, Cohen SM, Tezcan FA. J. Am. Chem. Soc. 2020; 142: 6907
  • 18 Kumar RS, Kumar SK. A, Vijayakrishna K, Sivaramakrishna A, Rao CV. S. B, Sivaraman N, Sahoo SK. Inorg. Chem. 2018; 57: 15270
  • 19 Dawar P, Raju MB, Ramakrishna RA. Synth. Commun. 2014; 6: 836
  • 20 Yuan Y, Wu XF. Synlett 2019; 30: 1820
  • 21 Finikova OS, Aleshchenkov SE, Briñas RP, Cheprakov AV, Carroll PJ, Vinogradov SA. J. Org. Chem. 2005; 70: 4617
  • 22 Jiang HF, Shen YX, Wang ZY. Tetrahedron Lett. 2007; 48: 7542