Subscribe to RSS
DOI: 10.1055/a-1576-4080
Biological Activities of Extracts from Ageratum fastigiatum: Phytochemical Study and In Silico Target Fishing Approach[ # ]
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 202407/2014‐4Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 249299/2013‐5
Abstract
In the present study, the ethanolic extract from aerial parts of Ageratum fastigiatum was evaluated in vitro against epimastigote forms of Trypanosoma cruzi (Y strain), promastigote forms of Leishmania amazonensis (PH8 strain), and L. chagasi (BH400 strain). The extract was also evaluated against Staphylococcus aureus (ATCC 25 923), Escherichia coli (ATCC 11 775), Pseudomonas aeruginosa (ATCC 10 145), and Candida albicans (ATCC 36 802). The phytochemical screening was performed by thin-layer chromatography and high-performance liquid chromatography. The extract was fractionated using flash preparative chromatography. The ethanolic extract showed activity against T. cruzi, L. chagasi, and L. amazonensis and antimicrobial activity against S. aureus, E. coli, P. aeruginosa, and C. albicans. The phytochemical screening revealed coumarins, terpenes/sterols, and flavonoids in the ethanolic extract. In addition, the coumarin identified as ayapin was isolated from this extract. We also performed in silico prediction of potential biological activities and targets for compounds previously found in A. fastigiatum. Several predictions were confirmed both retrospectively and prospectively by experimental results described here or elsewhere. Some activities described in the in silico target fishing approach were validated by the ethnopharmacological use and known biological properties. Some new activities and/or targets were predicted and could guide future studies. These results suggest that A. fastigiatum can be an interesting source of substances with antiparasitic and antimicrobial activities.
Key words
Ageratum fastigiatum - Asteraceae, antimicrobial - Leishmania - Trypanosoma - ayapin - in silico prediction# Dedicated to Professor Arnold Vlietinck on the occasion of his 80th birthday.
Supporting Information
- Supporting Information
The following are available as Supporting Information: 1S concentration-response curves of samples; 2S Column graphs of antimicrobial activity; 3S to 8S 1D and 2D NMR spectra of ayapin; 9S table of compounds previously isolated from A. fastigiatum for in silico prediction studies; 10S to 15S Tables of predicted activities to different scaffolds.
Publication History
Received: 13 January 2021
Accepted after revision: 30 July 2021
Article published online:
16 September 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Del-Vechio-Vieira G, Barbosa MVD, Lopes BC, Sousa OV, Santiago-Fernandes LDR, Esteves RL, Kaplan MAC. Caracterização morfoanatômica de Ageratum fastigiatum (Asteraceae). Rev Bras Farmacogn 2008; 18: 769-776 DOI: 10.1590/S0102-695X2008000500023.
- 2 Campos PCL, Freitas BAA. Plantas medicinais utilizadas na Região de Diamantina (MG), Cerrado e Campo Rupestre da Serra do Espinhaço (MG). Ensaios Cienc 2018; 22: 63-67 DOI: 10.17921/1415-6938.2018v22n1p63-67.
- 3 Gonçalves LD, Grael CFF, Lopes NP, Siriane SEQ, Archanjo FC, Praxedes MPS, Dias MEC. Estudo fitoquímico de Ageratum fastigiatum: planta do cerrado e campo rupestre utilizada na medicina popular na região do Alto Jequitinhonha. Diamantina: IX Jornada Acadêmica, Científica e Tecnológica da UFVJM; 2007. Accessed June 17 2020 at: http://acervo.ufvjm.edu.br:8080/jspui/bitstream/1/2029/1/filipe_castro_faria.pdf
- 4 Gonçalves LD, Almeida HR, Oliveira PM, Lopes NP, Turatti ICC, Archanjo FC, Grael CFF. Contribution for the phytochemical studies of Ageratum fastigiatum . Rev Bras Farmacogn 2011; 21: 936-942 DOI: 10.1590/S0102-695X2011005000151.
- 5 Bohlmann F, Ludwig GW, Jakupovic J, King RM, Robinson H. A daucanolide further farnesene derivatives from Ageratum fastigiatum . Phytochemistry 1983; 22: 983-986 DOI: 10.1016/0031-9422(83)85036-5.
- 6 Bohlmann F, Ahmed M, King RM, Robinson H. Labdane and eudesmane derivatives from Ageratum fastigiatum . Phytochemistry 1981; 20: 1434-1435 DOI: 10.1016/0031-9422(81)80061-1.
- 7 Avelar-Freitas BA, Dias JVL, Tibães GG, Rocha CA, Bahia-Oliveira GH, Grael CFF, Pires HHR. The effect of Ageratum fastigiatum extract on Rhodnius nasutus, vector of Chagas disease. Rev Bras Farmacogn 2013; 23: 366-369 DOI: 10.1590/S0102-695X2012005000139.
- 8 Del-Vechio-Vieira G, Sousa OV, Yamamoto CH, Kaplan MAC. Atividades antinociceptiva e antimicrobiana de Ageratum fastigiatum (Gardn.) R.M. King et H. Rob. (Asteraceae). Rev Bras Farm 2007; 88: 181-184
- 9 Faria FC. Estudo fitoquímico e avaliação de potencial tóxico da espécie Ageratum fastigiatum (Gardner) RM King & H. Rob (Asteraceae) [Dissertação]. Diamantina: Universidade Federal dos Vales do Jequitinhonha e Mucuri; 2019
- 10 Del-Vechio-Vieira G, Santos BCS, Alves MS, Araújo ALA, Yamamoto CH, Pinto MA, Kaplan MAC, Sousa OV. Bioactivities of the ethanol extract from Ageratum fastigiatum branches: antioxidant, antinociceptive and anti-inflammatory. Acad Bras Cienc 2016; 88: 1471-1484
- 11 Larsen TO, Hansen MAE. Dereplication and Discovery of natural Products by UV Spectroscopy. In: Colegate SM, Molyneux RJ. eds. Bioactive natural Products Detection, Isolation, and structural Determination. Boca Raton: CRC-Press; 2007: 221-244
- 12 Debenedetti SL, Nadinic EL, Coussio JD, De Kimpe N, Boeykens M. Two 6, 7-dioxygenated coumarins from Pterocaulon virgatum . Phytochemistry 1998; 48: 707-710 DOI: 10.1016/S0031-9422(98)00020-X.
- 13 Banfi D, Patiny L. www.nmrdb.org: Resurrecting and processing NMR spectra on-line. Chimia 2008; 62: 280-281 Accessed March 21 2020 at: https://www.nmrdb.org/13c/index.shtml?v=v2.121.0
- 14 Souza JA, Pozetti GL. Hemocoagulant activity of ayapin obtained from Alomia fatigiata . Rev Fac Farm Odontol 1974; 8: 123-127
- 15 Lopes JLC, Dias DA, Albuquerque S, Cunha WR. Trypanocidal activity of Alomia fastigiata . Fitoterapia 1997; 28: 182-183
- 16 Jerezano A, Jimeneza F, Cruz MC, Montiela LE, Delgado F, Tamariz J. New approach for the construction of the coumarin frame and application in the total synthesis of natural products. Helv Chim Acta 2011; 94: 185-198
- 17 Tal B, Robeson DJ. The induction, by fungal inoculation, of ayapin and scopoletin biosynthesis in Helianthus annuus . Phytochemistry 1986; 25: 77-79 DOI: 10.1016/S0031-9422(00)94505-9.
- 18 Scio E, Ribeiro A, Alves TMA, Romanha AJ, Souza Filho JD, Cordell GA, Zani CL. Diterpenes from Alomia myriadenia (Asteraceae) with cytotoxic and trypanocidal activity. Phytochemistry 2003; 64: 1125-1131
- 19 Hussain MI, Syed QA, Khattak MNK, Hafez B, Reigosa MJ, El-Keblawys A. Natural product coumarins: biological and pharmacological perspectives. Biologia 2019; 74: 863-888 DOI: 10.2478/s11756-019-00242-x.
- 20 Marino KA, Shang Y, Filizola M. Insights into the function of opioid receptors from molecular dynamics simulations of available crystal structures. Br J Pharmacol 2018; 175: 2834-2845 DOI: 10.1111/bph.13774.
- 21 Olaya MP, Vergel NE, López JL, Viña D, Guerrero MF. 8-Propyl-6H-[1,3]dioxolo[4,5-g]chromen-6-one: a new coumarin with monoamine oxidase B inhibitory activity and possible anti-parkinsonian effects. Braz J Pharm Sci 2020; 56: e17609 DOI: 10.1590/s2175-97902019000317609.
- 22 Okabe H, Obata Y, Takayama K, Nagai T. Percutaneous absorption enhancing effect and skin irritation of monocyclic monoterpenes. Drug Des Deliv 1990; 6: 229-238
- 23 Guimarães AG, Quintans JSS, Quintans-Júnio LJ. Monoterpenes with analgesic activity–a systematic review. Phytother Res 2013; 27: 1-15 DOI: 10.1002/ptr.4686.
- 24 Salakhutdinov NF, Volcho KP, Yarovaya OI. Monoterpenes as a renewable source of biologically active compounds. Pure Appl Chem 2017; 89: 1105-1118 DOI: 10.1515/pac-2017-0109.
- 25 Santos MRV, Moreira FV, Fraga BP, Sousa DP, Bonjardim LR, Quintans-Junior LJ. Cardiovascular effects of monoterpenes: A review. Rev Bras de Farmacogn 2011; 21: 764-771
- 26 Castro CCB, Dias MM, Rezende TP, Magalhães LG, Silva Filho AA. Natural Products with Activity against Schistosoma Species. In: Rai MK, Kon KV, eds. Fighting Multidrug Resistance with herbal Extracts, essential Oils and their Components. San Diego: Academic Press; 2013: 109-134
- 27 Silveira e Sá RC, Andrade LN, Sousa DP. A review on anti-inflammatory activity of monoterpenes. Molecules 2013; 18: 1227-1254 DOI: 10.3390/molecules18011227.
- 28 Chen HW, He XH, Yuan R, Wei BJ, Chen Z, Dong JX, Wang J. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo . Fitoterapia 2016; 110: 142-149 DOI: 10.1016/j.fitote.2016.03.011.
- 29 Modzelewska A, Sur S, Kumar SK, Khan SR. Sesquiterpenes: natural products that decrease cancer growth. Curr Med Chem Anticancer Agents 2005; 5: 477-499 DOI: 10.2174/1568011054866973.
- 30 Fraga BM. Natural sesquiterpenoids. Nat Prod Rep 2013; 30: 1226-1264 DOI: 10.1039/c3np70047.
- 31 Sut S, Maggi F, Nicoletti M, Baldana V, DallʼAcqua S. New drugs from old natural compounds: scarcely investigated sesquiterpenes as new possible therapeutic agents. Curr Med Chem 2018; 25: 1241-1258 DOI: 10.2174/0929867324666170404150351.
- 32 Vermaak I, Viljoen A M, Hamman JH. Natural products in anti-obesity therapy. Nat Prod Rep 2011; 28: 1493 DOI: 10.1039/c1np00035g.
- 33 Dahlgren D, Lennernäs H. Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics 2019; 11: 411-415
- 34 Rocha LG, Almeida JRGS, Macedo RO, Barbosa-Filho JM. A review of natural products with antileishmanial activity. Phytomedicine 2005; 12: 514-535
- 35 Aguilar-Avila DS, Flores-Soto ME, Tapia-Vazquez C, Pastor-Zarandona AO, Lopez-Roa R, Viveros-Paredes RM. β-Caryophyllene, a natural sesquiterpene, attenuates neuropathic pain and depressive-like behavior in experimental diabetic mice. J Med Food 2019; 22: 460-468 DOI: 10.1089/jmf.2018.0157.
- 36 Hanson JR. Diterpenoids. Nat Prod Rep 2009; 26: 1156-1171 DOI: 10.1039/b807311m.
- 37 Islam MT, Mubarak MS. Diterpenes and their derivatives as promising agents against dengue virus and dengue vectors: a literature-based review. Phytother Res 2020; 34: 674-684 DOI: 10.1002/ptr.6562.
- 38 Akaberi M, Iranshahi M, Mehri S. Molecular signaling pathways behind the biological effects of Salvia species diterpenes in neuropharmacology and cardiology. Phytother Res 2016; 30: 878-893 DOI: 10.1002/ptr.5599.
- 39 Kuo RY, Qian K, Morris-Natschke SL, Lee KH. Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents. Nat Prod Rep 2009; 26: 1321 DOI: 10.1039/b810774m.
- 40 Georgatza D, Gorgogietas VA, Kylindri P, Charalambous MC, Papadopoulou KK, Hayes J M, Psarra AMG. The triterpene echinocystic acid and its 3-O-glucoside derivative are revealed as potent and selective glucocorticoid receptor agonists. Int J Biochem Cell Biol 2016; 79: 277-287 DOI: 10.1016/j.biocel.2016.08.028.
- 41 Haridas V, Xu ZX, Kitchen D, Jiang A, Michels P, Gutterman JU. The anticancer plant triterpenoid, avicin D, regulates glucocorticoid receptor signaling: implications for cellular metabolism. PLoS One 2011; 6: e28037 DOI: 10.1371/journal.pone.0028037.
- 42 Das A, Jawed JJ, Das MC, Sandhu P, De UC, Dinda B, Akhter Y, Bhattacharjee S. Antileishmanial and immunomodulatory activities of lupeol, a triterpene compound isolated from Sterculia villosa . Int J Antimicrob Agents 2017; 50: 512-522 DOI: 10.1016/j.ijantimicag.2017.04.022.
- 43 Mozirandi W, Tagwireyi D, Mukanganyama S. Evaluation of antimicrobial activity of chondrillasterol isolated from Vernonia adoensis (Asteraceae). BMC Complement Altern Med 2019; 19: 249 DOI: 10.1186/s12906-019-2657-7.
- 44 Sheng H, Sun H. Synthesis, biology and clinical significance of pentacyclic triterpenes: a multi-target approach to prevention and treatment of metabolic and vascular diseases. Nat Prod Rep 2011; 28: 543-593 DOI: 10.1039/c0np00059k.
- 45 Clark R. Glucocorticoid receptor antagonists. Curr Top Med Chem 2008; 8: 813-838 DOI: 10.2174/156802608784535011.
- 46 Patočka J. Biologically active pentacyclic triterpenes and their current medicine signification. J Appl Biomed 2003; 1: 7-12 DOI: 10.32725/jab.2003.002.
- 47 Salvador JA, Carvalho JF, Neves MA, Silvestre SM, Leitão AJ, Silva MM, Sá e Melo ML. Anticancer steroids: linking natural and semi-synthetic compounds. Nat Prod Rep 2013; 30: 324-374 DOI: 10.1039/c2np20082a.
- 48 Kaur N, Chaudhary J, Jain A, Kishore A. Stigmasterol: a comprehensive review. Int J Pharm Sci Res 2011; 2: 2259-2265
- 49 Silva EAP, Carvalho JS, Guimarães AG, Barreto RSS, Santos MRV, Barreto AS, Quintans-Júnior LJ. The use of terpenes and derivatives as a new perspective for cardiovascular disease treatment: a patent review (2008–2018). Expert Opin Ther Pat 2019; 29: 43-53 DOI: 10.1080/13543776.2019.1558211.
- 50 Ramu R, Shirahatti PS, Nayakavadi S, Vadivelan R, Zameer F, Dhananjaya BL, Nagendra PMN. The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats. Food Funct 2016; 7: 3999-4011 DOI: 10.1039/c6fo00343e.
- 51 Bansal R, Singh R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: a literature review. Med Res Rev 2018; 38: 1126-1158 DOI: 10.1002/med.21458.
- 52 Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018; 23: 250 DOI: 10.3390/molecules23020250.
- 53 Detsi A, Kontogiorgis C, Hadjipavlou-Litina D. Coumarin derivatives: an updated patent review (2015–2016). Expert Opin Ther Pat 2017; 27: 1201-1226 DOI: 10.1080/13543776.2017.1360284.
- 54 Assmann TS, Brondani LA, Bouças AP, Canani LH, Crispim D. Toll-like receptor 3 (TLR3) and the development of type 1 diabetes mellitus. Arch Endocrinol Metab 2015; 59: 4-12 DOI: 10.1590/2359-3997000000003.
- 55 Del-Vechio-Vieira G, Sousa OV, Miranda MA, Senna-Valle L, Kaplan MAC. Analgesic and anti-inflammatory properties of essential oil from Ageratum fastigiatum . Braz Arch Biol Technol 2009; 52: 1115-1121 DOI: 10.1590/S1516-89132009000500008.
- 56 Avelar-Freitas BA, Almeida VG, Santos MG, Santos JAT, Barroso PR, Grael CFF, Gregório LE, Rocha-Vieira E, Brito-Melo GEA. Essential oil from Ageratum fastigiatum reduces expression of the pro-inflammatory cytokine tumor necrosis factor-alpha in peripheral blood leukocytes subjected to in vitro stimulation with phorbol myristate acetate. Rev Bras Farmacogn 2015; 25: 129-133 DOI: 10.1016/j.bjp.2015.03.002.
- 57 Huang Z, Xie H, Wang R, Sun Z. Retinoid-related orphan receptor γt is a potential therapeutic target for controlling inflammatory autoimmunity. Expert Opin Ther Targets 2007; 11: 737-743 DOI: 10.1517/14728222.11.6.737.
- 58 Bolasco A, Carradori S, Fioravanti R. Focusing on new monoamine oxidase inhibitors. Expert Opin Ther Pat 2010; 20: 909-939 DOI: 10.1517/13543776.2010.495716.
- 59 Wagner H, Bladt S. Plant Drug Analysis: A thin Layer Chromatography Atlas. 2nd edition. Berlin, Heidelberg: Springer; 2001
- 60 Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution antimicrobial Susceptibility Tests for Bacteria that grow aerobically. 11th ed. CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute; 2018
- 61 Fukuda M, Ohkoshi E, Makino M, Fujimoto Y. Studies on the constituents of the leaves of Baccharis dracunculifolia (Asteraceae) and their cytotoxic activity. Chem Pharm Bull 2006; 54: 1465-1468 DOI: 10.1248/cpb.54.1465.
- 62 Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution antifungal Susceptibility Testing of Yeasts. 4th ed. CLSI standard M27. Wayne, PA: Clinical and Laboratory Standards Institute; 2017
- 63 Di Veroli GY, Fornari C, Goldlust I, Mills G, Koh SB, Bramhall JL, Richards FM, Jodrell DI. An automated fitting procedure and software for dose-response curves with multiphasic features. Sci Rep 2015; 5: 1-11
- 64 Rocha MP, Campana PRV, Scoaris DO, Almeida VL, Lopes JCD, Silva AF, Pieters L, Silva CG. Biological activities from Aspidosperma subincanum Mart. and in silico prediction for inhibition of acetylcholinesterase. Phytother Res 2018; 32: 2021-2033 DOI: 10.1002/ptr.6133.
- 65 Rocha MP, Campana PRV, Scoaris DO, Almeida VL, Lopes JCD, Shaw JMH, Silva CG. Combined in vitro studies and in silico target fishing for the evaluation of the biological activities of Diphylleia cymosa and Podophyllum hexandrum . Molecules 2018; 23: 3303 DOI: 10.3390/molecules23123303.
- 66 Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform 2010; 29: 476-488
- 67 da Silva RG, Almeida TC, Reis ACC, Filho SAV, Brandão GC, da Silva GN, de Sousa HC, de Almeida VL, Lopes JCD, de Souza GHB. In silico pharmacological prediction and cytotoxicity of flavonoids glycosides identified by UPLC-DAD-ESI-MS/MS in extracts of Humulus lupulus leaves cultivated in Brazil. Nat Prod Res 2020; 7: 1-6 DOI: 10.1080/14786419.2020.1803308.
- 68 Briñez-Ortega E, Almeida VL, Lopes JCD, Burgos AE. Partial inclusion of bis(1,10-phenanthroline)silver(I) salicylate in β-cyclodextrin: spectroscopic characterization, in vitro and in silico antimicrobial evaluation. An Acad Bras Ciênc 2020; 92: e20181323 DOI: 10.1590/0001-3765202020181323.
- 69 Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 2021; 49: D1388-D1395 DOI: 10.1093/nar/gkaa971.
- 70 Domingues BF. 3D-Pharma: Uma ferramenta para triagem virtual baseada em fingerprints de farmacóforos. Accessed May 12, 2021 at: http://www.bibliotecadigital.ufmg.br/dspace/handle/1843/BUBD-9DKHDA
- 71 Bolton EE, Kim S, Bryant SH. PubChem3D: Conformer generation. J Cheminform 2011; 3: 4 DOI: 10.1186/1758-2946-3-4.
- 72 Hawkins PCD, Nicholls A. Conformer Generation with OMEGA: Learning from the data set and the analysis of failures. J Chem Inf Model 2012; 52: 2919-2936 DOI: 10.1021/ci300314k.
- 73 Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model 2010; 50: 572-584 DOI: 10.1021/ci100031x.
- 74 Sud M. MayaChemTools: an open source package for computational drug discovery. J Chem Inf Model 2016; 56 (12) 2292-2297
- 75 Shemetulskis NE, Weininger D, Blankley CJ, Yang JJ, Humblet C. Stigmata: an algorithm to determine structural commonalities in diverse datasets. J Chem Inf Comput Sci 1996; 36: 862-871 DOI: 10.1021/ci950169.
- 76 Santos FM, De Winter H, Augustyns K, Lopes JCD. Use of extensive cross-validation and bootstrap application (ExCVBA) for molecular modeling of some pharmacokinetics properties. Accessed May 21, 2021 at: https://www.researchgate.net/profile/Julio_Lopes2/publication/282644866_2015_-_Poster_OpenTox-_Use_of_Extensive_Cross-Validation_and_Bootstrap_Application_ExCVBA_for_Molecular_Modeling_of_Some_Pharmacokinetics_Properties/data/561518bd08aec622441191cc/2015-Poster-OpenTox-Use-of-Extensive-Cross-Validation-and-Bootstrap-Application-ExCVBA-for-Molecular-Modeling-of-Some-Pharmacokinetics-Properties.pdf
- 77 Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2011; 2: 1-27 Accessed May 12, 2021 at: http://www.csie.ntu.edu.tw/~cjlin/libsvm
- 78 Lopes JCD, Santos FM, Martins-José A, Augustyns K, De Winter H. The Power metric: a new statistically robust enrichment-type metric for virtual screening applications with early recovery capability. J Cheminform 2017; 9: 7 DOI: 10.1186/s13321-016-0189-4.
- 79 De Winter H, Lopes JCD. Reply to the comment made by Šicho, Vorśilák and Svozil on “The Power metric: A new statistically robust enrichment-type metric for virtual screening applications with early recovery capability”. J Cheminform 2018; 10: 14 DOI: 10.1186/s13321-018-0262-2.
- 80 CPAN 2017. The Comprehensive Perl Archive Network. Accessed May 12, 2021 at: http://search.cpan.org/perldoc?Algorithm::NaiveBayes
- 81 Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem Heterocycl Compd 2014; 50: 444-457 DOI: 10.1007/s10593-014-1496-1.