CC BY-NC-ND 4.0 · Synthesis 2021; 53(21): 3991-4003
DOI: 10.1055/a-1535-3215
short review

Assembling Complex Structures through Cascade and Cycloaddition Processes via Non-Acceptor Gold or Rhodium Carbenes

Helena Armengol-Relats
a   Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
b   Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain
,
Mauro Mato
a   Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
b   Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain
,
Imma Escofet
a   Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
b   Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain
,
a   Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
b   Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain
› Author Affiliations
We thank the Ministerio de Ciencia e Innovación (PID2019-104815GB-I00) (FPI predoctoral fellowship to M.M. and FPU predoctoral fellowship to H.A.-R.), Severo Ochoa Research Excellence Accreditation 2020-2023 (CEX2019-000925-S), the European Research Council (Advanced Grant No. 835080), the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017 SGR 1257), and the Centres de Recerca de Catalunya (CERCA) Program/Generalitat de Catalunya for financial support.


Abstract

The ability of highly energetic metal–carbene intermediates to engage in complex cascade or formal cycloaddition processes is one of the most powerful tools for building intricate molecular architectures in a straightforward manner. Among this type of organometallic intermediates, non-acceptor metal carbenes are particularly challenging to access and, therefore, have experienced slower development. In this regard, our group has exploited the use of electrophilic gold(I) complexes to selectively activate certain classes of substrates for the generation of this type of intermediate. Thus, very different types of molecules, such as enynes or 7-substituted cycloheptatrienes, lead to the formation of carbenes under gold(I) catalysis. Related rhodium(II) carbenes can also be generated from cycloheptatrienes. In this account, we aim to summarize our efforts towards the in situ generation of such highly versatile organometallic species as well as studies on their reactivity through formal cycloadditions or complex cascade reactions.

1 Introduction

2 Generation of Au(I)-Vinylcarbenes via a Cycloisomerization/1,5-Alkoxy Migration Cascade

2.1 Intramolecular Trapping of Au(I) Vinylcarbenes

2.1.1 Applications in Total Synthesis

2.2 Intermolecular Trapping of Au(I) Vinylcarbenes

2.2.1 Total Synthesis of Schisanwilsonene A

2.2.2 Trapping with Furans, 1,3-Dicarbonyl Compounds and Cyclic Alkenes

2.2.3 Mechanism of the Cycloisomerization/1,5-Migration Sequence and the Role of the OR Migrating Group

2.2.4 (4+3) Cycloadditions from Enynes

3 Formal Cycloadditions of Simple Donor Metal Carbenes

3.1 The Metal-Catalyzed Retro-Buchner Reaction

3.2 Formal Cycloadditions with Non-Acceptor Carbenes via Metal-Catalyzed Aromative Decarbenations

3.2.1 (4+1) Cycloadditions of Au(I) Carbenes

3.2.2 (3+2) Cycloadditions of Au(I) Carbenes

3.2.3 (4+3) Cycloadditions of Rh(II) Carbenes

4 Concluding Remarks



Publication History

Received: 31 May 2021

Accepted after revision: 24 June 2021

Accepted Manuscript online:
24 June 2021

Article published online:
31 August 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Hutchings GJ. J. Catal. 1985; 96: 292
    • 1b Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett. 1987; 16: 405
    • 1c Hutchings GJ. ACS Cent. Sci. 2018; 4: 1095
  • 2 Teles JH, Brode S, Chabanas M. Angew. Chem. Int. Ed. 1998; 37: 1415
  • 3 Hashmi AS. K, Frost TM, Bats JW. J. Am. Chem. Soc. 2000; 122: 11553
    • 4a Nieto-Oberhuber C, Muñoz MP, Buñuel E, Nevado C, Cárdenas DJ, Echavarren AM. Angew. Chem. Int. Ed. 2004; 43: 2402
    • 4b Luzung MR, Markham JP, Toste FD. J. Am. Chem. Soc. 2004; 126: 10858
    • 4c Mamane V, Gress T, Krause H, Fürstner A. J. Am. Chem. Soc. 2004; 126: 8654
    • 5a Nieto-Oberhuber C, Muñoz MP, López S, Jiménez-Núñez E, Nevado C, Herrero-Gómez E, Raducan M, Echavarren AM. Chem. Eur. J. 2006; 12: 1677
    • 5b Nieto-Oberhuber C, López S, Muñoz MP, Jiménez-Núñez E, Buñuel E, Cárdenas DJ, Echavarren AM. Chem. Eur. J. 2006; 12: 1694
    • 5c Nieto-Oberhuber C, López S, Jiménez-Núñez E, Echavarren AM. Chem. Eur. J. 2006; 12: 5916
    • 6a Jiménez-Núñez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
    • 6b Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
    • 6c Obradors C, Echavarren AM. Acc. Chem. Res. 2014; 47: 902
    • 6d Fensterbank L, Malacria M. Acc. Chem. Res. 2014; 47: 953
    • 6e Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 6f Pflästerer D, Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 1331
    • 6g Echavarren AM, Muratore M, López-Carrillo V, Escribano-Cuesta A, Huguet N, Obradors C. Org. React. 2017; 92: 1
    • 6h Mato M, Franchino A, García-Morales C, Echavarren AM. Chem. Rev. 2021; 121: 8613
  • 7 Jiménez-Nuñez E, Echavarren AM. Chem. Commun. 2007; 333
    • 8a Kennedy-Smith JJ, Staben ST, Toste FD. J. Am. Chem. Soc. 2004; 126: 4526
    • 8b Hashmi AS. K, Weyrauch JP, Frey W, Bats NW. Org. Lett. 2004; 6: 4391
    • 8c García-Mota M, Cabello N, Maseras F, Echavarren AM, Pérez-Ramírez J, López N. ChemPhysChem 2008; 9: 1624
    • 9a Day DP, Chan PW. H. Adv. Synth. Catal. 2016; 358: 1368
    • 9b Mayans JG, Armengol-Relats H, Calleja P, Echavarren AM. Isr. J. Chem. 2018; 58: 639
    • 10a López-Carrillo V, Echavarren AM. J. Am. Chem. Soc. 2010; 132: 9292
    • 10b Homs A, Obradors C, Leboeuf D, Echavarren AM. Adv. Synth. Catal. 2014; 356: 221
    • 10c de Orbe ME, Amenós L, Kirillova MS, Wang Y, López-Carrillo V, Maseras F, Echavarren AM. J. Am. Chem. Soc. 2017; 139: 10302
    • 10d García-Morales C, Ranieri B, Escofet I, López-Suarez L, Obradors C, Konovalov AI, Echavarren AM. J. Am. Chem. Soc. 2017; 139: 13628

      Examples on gold(I)-catalyzed 1,2-acyl migration of propargylic carboxylates:
    • 11a Johansson MJ, Gorin DJ, Staben ST, Toste FD. J. Am. Chem. Soc. 2005; 127: 18002
    • 11b Marion N, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2750
    • 11c Amijs CH. M, López-Carrillo V, Echavarren AM. Org. Lett. 2007; 9: 4021
    • 11d Witham CA, Mauleón P, Shapiro ND, Sherry BD, Toste FD. J. Am. Chem. Soc. 2007; 129: 5838
    • 11e Correa A, Marion N, Fensterbank L, Malacria M, Nolan SP, Cavallo L. Angew. Chem. Int. Ed. 2008; 47: 718
    • 11f Sun Y.-W, Tang X.-Y, Shi M. Chem. Commun. 2015; 51: 13937
    • 11g Li Y, Zhu C.-Z, Zhang J. Eur. J. Org. Chem. 2017; 6609
    • 11h Zhao J, Yang S, Xie X, Li X, Liu Y. J. Org. Chem. 2018; 83: 1287

      Examples on gold(I)-catalyzed activation of cyclopropenes:
    • 12a Hadfield MS, Lee A.-L. Chem. Commun. 2011; 47: 1333
    • 12b Young PC, Hadfield MS, Arrowsmith L, Macleod KM, Mudd RJ, Jordan-Hore JA, Lee A.-L. Org. Lett. 2012; 14: 898
    • 12c Drew MA, Arndt S, Richardson C, Rudolph M, Hashmi AS. K, Hyland CJ. T. Chem. Commun. 2019; 55: 13971
    • 12d González J, de la Fuente A, González MJ, Díez de Tejada L, López LA, Vicente R. Beilstein J. Org. Chem. 2019; 15: 285
  • 13 Jiménez-Núñez E, Raducan M, Lauterbach T, Molawi K, Solorio CR, Echavarren AM. Angew. Chem. Int. Ed. 2009; 48: 6152
  • 14 Dorel R, McGonigal PR, Echavarren AM. Angew. Chem. Int. Ed. 2016; 128: 11286
  • 15 Carreras J, Livendahl M, McGonigal PR, Echavarren AM. Angew. Chem. Int. Ed. 2014; 53: 4896
  • 16 Jiménez-Núñez E, Claverie CK, Nieto-Oberhuber C, Echavarren AM. Angew. Chem. Int. Ed. 2006; 45: 5452
  • 17 Calleja P, Muratore ME, Jiménez T, Echavarren AM. Synthesis 2016; 48: 3183
  • 18 Muratore ME, Konovalov AI, Armengol-Relats H, Echavarren AM. Chem. Eur. J. 2018; 24: 15613
  • 19 Escribano-Cuesta A, López-Carrillo V, Janssen D, Echavarren AM. Chem. Eur. J. 2009; 15: 5646
  • 20 Huple DB, Liu RS. Chem. Commun. 2012; 48: 10975
  • 21 Jiménez-Núñez E, Molawi K, Echavarren AM. Chem. Commun. 2009; 7327
    • 22a Molawi K, Delpont N, Echavarren AM. Angew. Chem. Int. Ed. 2010; 49: 3517
    • 22b López-Suárez L, Riesgo L, Bravo F, Ransom TT, Beutler JA, Echavarren AM. Chem. Med Chem. 2016; 11: 1003
    • 22c Wu Z, Suppo JS, Tumova S, Strope J, Bravo F, Moy M, Weinstein ES, Peer CJ, Figg WD, Chain WJ, Echavarren AM, Beech DJ, Beutler JA. ACS Med. Chem. Lett. 2020; 11: 1711
  • 23 Zhou Q, Chen X, Ma D. Angew. Chem. Int. Ed. 2010; 49: 3513
  • 24 Liu J.-Q, Yang Y.-F, Wang C.-F, Li Y, Qiu M.-H. Tetrahedron 2012; 68: 972
  • 25 Escofet I, Armengol-Relats H, Bruss H, Besora M, Echavarren AM. Chem. Eur. J. 2020; 26: 15738
  • 26 Cronan JM. Jr, Daviau TR, Pannell LK, Cardellina JH. II. J. Org. Chem. 1995; 60: 6864
  • 27 Brochini CB, Roque NF. J. Braz. Chem. Soc. 2000; 11: 361
  • 28 Yang Z, Chen H, Li Y. Helv. Chim. Acta 2003; 86: 3305
  • 29 Gaydou M, Miller RE, Delpont N, Ceccon J, Echavarren AM. Angew. Chem. Int. Ed. 2013; 52: 6396
  • 30 Mou S.-B, Xiao W, Wang H.-Q, Chen K.-Y, Xiang Z. Org. Lett. 2021; 23: 400
  • 31 Lebœuf D, Gaydou M, Wang Y, Echavarren AM. Org. Chem. Front. 2014; 1: 759
  • 32 Calleja P, Pablo Ó, Ranieri B, Gaydou M, Pitaval A, Moreno M, Raducan M, Echavarren AM. Chem. Eur. J. 2016; 22: 13613
  • 33 Shiroodi RK, Gevorgyan V. Chem. Soc. Rev. 2013; 42: 4991
  • 34 Benitez D, Shapiro ND, Tkatchouk E, Wang Y, Goddard WA. III, Toste FD. Nature Chem. 2009; 1: 482
  • 35 Armengol-Relats H, Mato M, Echavarren AM. Angew. Chem. Int. Ed. 2021; 60: 1916
  • 36 Xu X, Doyle MP. Acc. Chem. Res. 2014; 47: 1396
  • 37 Zhu D, Chen L, Fan H, Yao Q, Zhu S. Chem. Soc. Rev. 2015; 49: 908
  • 39 Wei F, Song C, Ma Y, Zhou L, Tung C.-H, Xu Z. Sci. Bull. 2015; 60: 1479
  • 40 Fulton JR, Aggarwal VK, de Vicente J. Eur. J. Org. Chem. 2005; 1479
  • 41 Miege F, Meyer C, Cossy J. Beilstein J. Org. Chem. 2011; 7: 717
  • 42 Mato M, García-Morales C, Echavarren AM. ChemCatChem 2019; 11: 53
  • 43 Solorio-Alvarado CR, Echavarren AM. J. Am. Chem. Soc. 2010; 132: 11881
    • 44a Solorio-Alvarado CR, Wang Y, Echavarren AM. J. Am. Chem. Soc. 2011; 133: 11952
    • 44b Mato M, Martín-Torres I, Herlé B, Echavarren AM. Org. Biomol. Chem. 2019; 17: 4216
  • 45 Herlé B, Holstein PM, Echavarren AM. ACS Catal. 2017; 7: 3668
  • 46 Wang Y, McGonigal PR, Herlé B, Besora M, Echavarren AM. J. Am. Chem. Soc. 2014; 136: 801
  • 47 Mato M, Herlé B, Echavarren AM. Org. Lett. 2018; 20: 4341
  • 48 Mato M, Echavarren AM. Angew. Chem. Int. Ed. 2019; 58: 2088
  • 49 Mato M, García-Morales C, Echavarren AM. ACS Catal. 2020; 10: 3564
  • 50 Wang Y, Muratore ME, Rong Z, Echavarren AM. Angew. Chem. Int. Ed. 2014; 53: 14022
  • 51 de Orbe ME, Echavarren AM. Eur. J. Org. Chem. 2018; 2740
  • 52 Yin X, Mato M, Echavarren AM. Angew. Chem. Int. Ed. 2017; 56: 14591
  • 53 For a recent enantioselective total synthesis and structural revision of dysiherbol A, see: Baars J, Grimm I, Blunk D, Neudörfl J.-M, Schmalz H.-G. Angew. Chem. Int. Ed. 2021; 60: 14915